4 releases (2 breaking)
0.3.0 | Nov 29, 2023 |
---|---|
0.2.0 | Mar 31, 2021 |
0.1.1 | Feb 26, 2021 |
0.1.0 | Feb 19, 2021 |
#471 in Algorithms
123 downloads per month
Used in 2 crates
92KB
1.5K
SLoC
rmpfit
Very simple pure Rust implementation of the CMPFIT library: the Levenberg-Marquardt technique to solve the least-squares problem.
The code is mainly copied directly from CMPFIT almost without changing. The original CMPFIT tests (Linear (free parameters), Quad (free and fixed parameters), and Gaussian (free and fixed parameters) function) are reproduced and passed.
Just a few obvoius Rust-specific optimizations are done:
- Removing
goto
(fuf). - Standart Rust Result as result.
- A few loops are zipped to help the compiler optimize the code (no performance tests are done anyway).
- Using trait
MPFitter
to call the user code. - Using
bool
type if possible.
Advantages
- Pure Rust.
- No external dependencies (assert_approx_eq just for testing).
- Internal Jacobian calculations.
Disadvantages
- Sided, analitical or user provided derivates are not implemented.
Usage Example
A user should implement trait MPFitter
for its struct:
use rmpfit::{MPFitter, MPResult, mpfit};
struct Linear {
x: Vec<f64>,
y: Vec<f64>,
ye: Vec<f64>,
}
impl MPFitter for Linear {
fn eval(&self, params: &[f64], deviates: &mut [f64]) -> MPResult<()> {
for (((d, x), y), ye) in deviates
.iter_mut()
.zip(self.x.iter())
.zip(self.y.iter())
.zip(self.ye.iter())
{
let f = params[0] + params[1] * *x;
*d = (*y - f) / *ye;
}
Ok(())
}
fn number_of_points(&self) -> usize {
self.x.len()
}
}
fn main() {
let l = Linear {
x: vec![
-1.7237128E+00,
1.8712276E+00,
-9.6608055E-01,
-2.8394297E-01,
1.3416969E+00,
1.3757038E+00,
-1.3703436E+00,
4.2581975E-02,
-1.4970151E-01,
8.2065094E-01,
],
y: vec![
1.9000429E-01,
6.5807428E+00,
1.4582725E+00,
2.7270851E+00,
5.5969253E+00,
5.6249280E+00,
0.787615,
3.2599759E+00,
2.9771762E+00,
4.5936475E+00,
],
ye: vec![0.07; 10],
};
// initializing input parameters
let mut init = [1., 1.];
let res = l.mpfit(&mut init, None, &Default::default()).unwrap();
// actual 3.2
assert_approx_eq!(init[0], 3.20996572);
assert_approx_eq!(status.xerror[0], 0.02221018);
// actual 1.78
assert_approx_eq!(init[1], 1.77095420);
assert_approx_eq!(status.xerror[1], 0.01893756);
}
then init
will contain the refined parameters of the fitting function. If user function fails to calculate
residuals, it should return MPError::Eval
.