11 releases (6 breaking)
0.7.0 | Jan 21, 2024 |
---|---|
0.6.1 | Aug 3, 2022 |
0.6.0 | Apr 22, 2022 |
0.5.1 | Feb 5, 2022 |
0.1.1 | Jan 8, 2022 |
#2135 in Database interfaces
47 downloads per month
165KB
3.5K
SLoC
Reshape
Also check out ReshapeDB, a new database built from the ground up to make zero-downtime schema and data migrations as simple and safe as possible. If you'd like to chat about it, please reach out!
Reshape is an easy-to-use, zero-downtime schema migration tool for Postgres. It automatically handles complex migrations that would normally require downtime or manual multi-step changes. During a migration, Reshape ensures both the old and new schema are available at the same time, allowing you to gradually roll out your application. It will also perform all changes without excessive locking, avoiding downtime caused by blocking other queries. For a more thorough introduction to Reshape, check out the introductory blog post.
Designed for Postgres 12 and later.
How it works
Reshape works by creating views that encapsulate the underlying tables, which your application will interact with. During a migration, Reshape will automatically create a new set of views and set up triggers to translate inserts and updates between the old and new schema. This means that every deployment is a three-phase process:
- Start migration (
reshape migration start
): Sets up views and triggers to ensure both the new and old schema are usable at the same time. - Roll out application: Your application can be gradually rolled out without downtime. The existing deployment will continue using the old schema whilst the new deployment uses the new schema.
- Complete migration (
reshape migration complete
): Removes the old schema and any intermediate data and triggers.
If the application deployment fails, you should run reshape migration abort
which will roll back any changes made by reshape migration start
without losing data.
Getting started
Installation
Binaries
Binaries are available for macOS and Linux under Releases.
Cargo
Reshape can be installed using Cargo (requires Rust 1.58 or later):
cargo install reshape
Docker
Reshape is available as a Docker image on Docker Hub.
docker run -v $(pwd):/usr/share/app fabianlindfors/reshape reshape migration start
Creating your first migration
Each migration should be stored as a separate file in a migrations/
directory. The files can be in either JSON or TOML format and the name of the file will become the name of your migration. We recommend prefixing every migration with an incrementing number as migrations are sorted by file name.
Let's create a simple migration to set up a new table users
with two fields, id
and name
. We'll create a file called migrations/1_create_users_table.toml
:
[[actions]]
type = "create_table"
name = "users"
primary_key = ["id"]
[[actions.columns]]
name = "id"
type = "INTEGER"
generated = "ALWAYS AS IDENTITY"
[[actions.columns]]
name = "name"
type = "TEXT"
This is the equivalent of running CREATE TABLE users (id INTEGER GENERATED ALWAYS AS IDENTITY, name TEXT)
.
Preparing your application
Reshape relies on your application using a specific schema. When establishing the connection to Postgres in your application, you need to run a query to select the most recent schema. The simplest way to do this is to use one of the helper libraries:
If your application is not using one of the languages with an available helper library, you can instead generate the query with the command: reshape schema-query
. To pass it along to your application, you can for example use an environment variable in your run script: RESHAPE_SCHEMA_QUERY=$(reshape schema-query)
. Then in your application:
# Example for Python
reshape_schema_query = os.getenv("RESHAPE_SCHEMA_QUERY")
db.execute(reshape_schema_query)
Running your migration
To create your new users
table, run:
reshape migration start --complete
We use the --complete
flag to automatically complete the migration. During a production deployment, you should first run reshape migration start
followed by reshape migration complete
once your application has been fully rolled out.
If nothing else is specified, Reshape will try to connect to a Postgres database running on localhost
using postgres
as both username and password. See Connection options for details on how to change the connection settings.
Using during development
When adding new migrations during development, we recommend running reshape migration start
but skipping reshape migration complete
. This way, the new migrations can be iterated on by updating the migration file and running reshape migration abort
followed by reshape migration start
.
Writing migrations
Basics
Every migration consists of one or more actions. The actions will be run sequentially. Here's an example of a migration with two actions to create two tables, customers
and products
:
[[actions]]
type = "create_table"
name = "customers"
primary_key = ["id"]
[[actions.columns]]
name = "id"
type = "INTEGER"
generated = "ALWAYS AS IDENTITY"
[[actions]]
type = "create_table"
name = "products"
primary_key = ["sku"]
[[actions.columns]]
name = "sku"
type = "TEXT"
Every action has a type
. The supported types are detailed below.
Tables
Create table
The create_table
action will create a new table with the specified columns, indices and constraints. You can optionally provide an up
option to backfill values from an existing table.
Example: create a customers
table with a few columns and a primary key
[[actions]]
type = "create_table"
name = "customers"
primary_key = ["id"]
[[actions.columns]]
name = "id"
type = "INTEGER"
generated = "ALWAYS AS IDENTITY"
[[actions.columns]]
name = "name"
type = "TEXT"
# Columns default to nullable
nullable = false
# default can be any valid SQL value, in this case a string literal
default = "'PLACEHOLDER'"
Example: create users
and items
tables with a foreign key between them
[[actions]]
type = "create_table"
name = "users"
primary_key = ["id"]
[[actions.columns]]
name = "id"
type = "INTEGER"
generated = "ALWAYS AS IDENTITY"
[[actions]]
type = "create_table"
name = "items"
primary_key = ["id"]
[[actions.columns]]
name = "id"
type = "INTEGER"
generated = "ALWAYS AS IDENTITY"
[[actions.columns]]
name = "user_id"
type = "INTEGER"
[[actions.foreign_keys]]
columns = ["user_id"]
referenced_table = "users"
referenced_columns = ["id"]
Example: create profiles
table based on existing users
table
[[actions]]
type = "create_table"
name = "profiles"
primary_key = ["user_id"]
[[actions.columns]]
name = "user_id"
type = "INTEGER"
[[actions.columns]]
name = "user_email"
type = "TEXT"
# Backfill from `users` table and copy `users.email` to `user_email` column
# This will perform an upsert based on the primary key to avoid duplicate rows
[actions.up]
table = "users"
values = { user_id = "id", user_email = "email" }
Rename table
The rename_table
action will change the name of an existing table.
Example: change name of users
table to customers
[[actions]]
type = "rename_table"
table = "users"
new_name = "customers"
Remove table
The remove_table
action will remove an existing table.
Example: remove users
table
[[actions]]
type = "remove_table"
table = "users"
Add foreign key
The add_foreign_key
action will add a foreign key between two existing tables. The migration will fail if the existing column values aren't valid references.
Example: create foreign key from items
to users
table
[[actions]]
type = "add_foreign_key"
table = "items"
[actions.foreign_key]
columns = ["user_id"]
referenced_table = "users"
referenced_columns = ["id"]
Remove foreign key
The remove_foreign_key
action will remove an existing foreign key. The foreign key will only be removed once the migration is completed, which means that your new application must continue to adhere to the foreign key constraint.
Example: remove foreign key items_user_id_fkey
from users
table
[[actions]]
type = "remove_foreign_key"
table = "items"
foreign_key = "items_user_id_fkey"
Columns
Add column
The add_column
action will add a new column to an existing table. You can optionally provide an up
setting. This should be an SQL expression which will be run for all existing rows to backfill the new column. up
may also reference another table to perform cross-table migrations (see "Complex changes across tables").
Example: add a new column reference
to table products
[[actions]]
type = "add_column"
table = "products"
[actions.column]
name = "reference"
type = "INTEGER"
nullable = false
default = "10"
Example: replace an existing name
column with two new columns, first_name
and last_name
[[actions]]
type = "add_column"
table = "users"
# Extract the first name from the existing name column
up = "(STRING_TO_ARRAY(name, ' '))[1]"
[actions.column]
name = "first_name"
type = "TEXT"
[[actions]]
type = "add_column"
table = "users"
# Extract the last name from the existing name column
up = "(STRING_TO_ARRAY(name, ' '))[2]"
[actions.column]
name = "last_name"
type = "TEXT"
[[actions]]
type = "remove_column"
table = "users"
column = "name"
# Reconstruct name column by concatenating first and last name
down = "first_name || ' ' || last_name"
Example: extract nested value from unstructured JSON data
column to new name
column
[[actions]]
type = "add_column"
table = "users"
# #>> '{}' converts the JSON string value to TEXT
up = "data['path']['to']['value'] #>> '{}'"
[actions.column]
name = "name"
type = "TEXT"
Example: duplicate email
column from users
to profiles
table
# `profiles` has `user_id` column which maps to `users.id`
[[actions]]
type = "add_column"
table = "profiles"
[actions.column]
name = "email"
type = "TEXT"
nullable = false
# When `users` is updated in the old schema, we write the email value to `profiles`
[actions.up]
table = "users"
value = "email"
where = "user_id = id"
Alter column
The alter_column
action enables many different changes to an existing column, for example renaming, changing type and changing existing values.
When performing more complex changes than a rename, up
and down
should be provided. These should be SQL expressions which determine how to transform between the new and old version of the column. Inside those expressions, you can reference the current column value by the column name.
Example: rename last_name
column on users
table to family_name
[[actions]]
type = "alter_column"
table = "users"
column = "last_name"
[actions.changes]
name = "family_name"
Example: change the type of reference
column from INTEGER
to TEXT
[[actions]]
type = "alter_column"
table = "users"
column = "reference"
up = "CAST(reference AS TEXT)" # Converts from integer value to text
down = "CAST(reference AS INTEGER)" # Converts from text value to integer
[actions.changes]
type = "TEXT" # Previous type was 'INTEGER'
Example: increment all values of an index
column by one
[[actions]]
type = "alter_column"
table = "users"
column = "index"
up = "index + 1" # Increment for new schema
down = "index - 1" # Decrement to revert for old schema
[actions.changes]
name = "index"
Example: make name
column not nullable
[[actions]]
type = "alter_column"
table = "users"
column = "name"
# Use "N/A" for any rows that currently have a NULL name
up = "COALESCE(name, 'N/A')"
[actions.changes]
nullable = false
Example: change default value of created_at
column to current time
[[actions]]
type = "alter_column"
table = "users"
column = "created_at"
[actions.changes]
default = "NOW()"
Remove column
The remove_column
action will remove an existing column from a table. You can optionally provide a down
setting. This should be an SQL expression which will be used to determine values for the old schema when inserting or updating rows using the new schema. down
may also reference another table to perform cross-table migrations (see "Complex changes across tables") . The down
setting must be provided when the removed column is NOT NULL
or doesn't have a default value.
Any indices that cover the column will be removed.
Example: remove column name
from table users
[[actions]]
type = "remove_column"
table = "users"
column = "name"
# Use a default value of "N/A" for the old schema when inserting/updating rows
down = "'N/A'"
Example: remove email
column from users
table and use column from profiles
table instead
[[actions]]
type = "remove_column"
table = "users"
column = "email"
# Our application will use the `profiles.email` column instead
# For backwards compatibility, we will write back to the removed `email` column whenever `profiles` is changed
[actions.down]
table = "profiles"
value = "profiles.email"
where = "users.id = profiles.user_id"
Indices
Add index
The add_index
action will add a new index to an existing table.
Example: create a users
table with a unique index on the name
column
[[actions]]
type = "create_table"
name = "users"
primary_key = "id"
[[actions.columns]]
name = "id"
type = "INTEGER"
generated = "ALWAYS AS IDENTITY"
[[actions.columns]]
name = "name"
type = "TEXT"
[[actions]]
type = "add_index"
table = "users"
[actions.index]
name = "name_idx"
columns = ["name"]
# Defaults to false
unique = true
Example: add GIN index to data
column on products
table
[[actions]]
type = "add_index"
table = "products"
[actions.index]
name = "data_idx"
columns = ["data"]
# One of: btree (default), hash, gist, spgist, gin, brin
type = "gin"
Remove index
The remove_index
action will remove an existing index. The index won't actually be removed until the migration is completed.
Example: remove the name_idx
index
[[actions]]
type = "remove_index"
index = "name_idx"
Enums
Create enum
The create_enum
action will create a new enum type with the specified values.
Example: add a new mood
enum type with three possible values
[[actions]]
type = "create_enum"
name = "mood"
values = ["happy", "ok", "sad"]
Remove enum
The remove_enum
action will remove an existing enum type. Make sure all usages of the enum has been removed before running the migration. The enum will only be removed once the migration is completed.
Example: remove the mood
enum type
[[actions]]
type = "remove_enum"
enum = "mood"
Custom
The custom
action lets you create a migration which runs custom SQL. It should be used with great care as it provides no guarantees of zero-downtime and will simply run whatever SQL is provided. Use other actions whenever possible as they are explicitly designed for zero downtime.
There are three optional settings available which all accept SQL queries. All queries need to be idempotent, for example by using IF NOT EXISTS
wherever available.
start
: run when a migration is started usingreshape migration start
complete
: run when a migration is completed usingreshape migration complete
abort
: run when a migration is aborted usingreshape migration abort
Example: enable PostGIS and pg_stat_statements extensions
[[actions]]
type = "custom"
start = """
CREATE EXTENSION IF NOT EXISTS postgis;
CREATE EXTENSION IF NOT EXISTS pg_stat_statements;
"""
abort = """
DROP EXTENSION IF EXISTS postgis;
DROP EXTENSION IF EXISTS pg_stat_statements;
"""
Complex changes across tables
The up
and down
options available when creating tables, adding columns and removing columns can also perform more complex changes that span tables.
Example: move email
column from users
to profiles
table
[[actions]]
type = "add_column"
table = "profiles"
[actions.column]
name = "email"
type = "TEXT"
nullable = false
# When `users` is updated in the old schema, we write the email value to `profiles`
[actions.up]
table = "users"
value = "users.email"
where = "profiles.user_id = users.id"
[[actions]]
type = "remove_column"
table = "users"
column = "email"
# When `profiles` is changed in the new schema, we write the email address back to the removed column
[actions.down]
table = "profiles"
value = "profiles.email"
where = "users.id = profiles.user_id"
Example: turn a 1:N relationship between users
and accounts
into N:M and change the format of the associated role
# Add `user_account_connections` as a junction table
[[actions]]
type = "create_table"
name = "user_account_connections"
primary_key = ["account_id", "user_id"]
[[actions.columns]]
name = "account_id"
type = "INTEGER"
[[actions.columns]]
name = "user_id"
type = "INTEGER"
# `role` is currently stored directly on the `users` table but is part of the relationship
[[actions.columns]]
name = "role"
type = "TEXT"
nullable = false
# Backfill the new table from `users` and uppercase the `role`
[actions.up]
table = "users"
values = { user_id = "id", account_id = "account_id", role = "UPPER(account_role)" }
where = "user_account_connections.user_id = users.id"
[[actions]]
type = "remove_column"
table = "users"
column = "account_id"
# When `user_account_connections` is updated, we write the `account_id` back to `users`
[actions.down]
table = "user_account_connections"
value = "user_account_connections.account_id"
where = "users.id = user_account_connections.user_id"
[[actions]]
type = "remove_column"
table = "users"
column = "account_role"
# When `user_account_connections` is updated, we write the lowercase role back to `users`
[actions.down]
table = "user_account_connections"
value = "LOWER(user_account_connections.role)"
where = "users.id = user_account_connections.user_id"
Commands and options
reshape migration start
Starts a new migration, applying all migrations under migrations/
that haven't yet been applied. After the command has completed, both the old and new schema will be usable at the same time. When you have rolled out the new version of your application which uses the new schema, you should run reshape migration complete
.
Options
See also Connection options
Option | Default | Description |
---|---|---|
--complete , -c |
false |
Automatically complete migration after applying it. |
--dirs |
migrations/ |
Directories to search for migration files. Multiple directories can be specified using --dirs dir1 dir2 dir3 . |
reshape migration complete
Completes migrations previously started with reshape migration complete
.
Options
reshape migration abort
Aborts any migrations which haven't yet been completed.
Options
reshape schema-query
Generates the SQL query you need to run in your application before using the database. This command does not require a database connection. Instead it will generate the query based on the latest migration in the migrations/
directory (or the directories specified by --dirs
).
If your application is written in Rust, we recommend using the Rust helper library instead.
The query should look something like SET search_path TO migration_1_initial_migration
.
Options
Option | Default | Description |
---|---|---|
--dirs |
migrations/ |
Directories to search for migration files. Multiple directories can be specified using --dirs dir1 dir2 dir3 . |
Connection options
The options below can be used with all commands that communicate with Postgres. Use either a connection URL or specify each connection option individually.
All options can also be set using environment variables instead of flags. If a .env
file exists, then variables will be automatically loaded from there.
Option | Default | Environment variable | Description |
---|---|---|---|
--url |
DB_URL |
URL to your Postgres database | |
--host |
localhost |
DB_HOST |
Hostname to use when connecting to Postgres |
--port |
5432 |
DB_PORT |
Port which Postgres is listening on |
--database |
postgres |
DB_NAME |
Database name |
--username |
postgres |
DB_USERNAME |
Postgres username |
--password |
postgres |
DB_PASSWORD |
Postgres password |
License
Reshape is released under the MIT license.
Dependencies
~13–26MB
~357K SLoC