9 releases
0.1.9 | Jan 10, 2024 |
---|---|
0.1.8 | Mar 2, 2023 |
0.1.7 | Dec 14, 2022 |
0.1.6 | Nov 28, 2022 |
0.1.1 | Sep 23, 2022 |
#424 in Algorithms
61 downloads per month
200KB
4K
SLoC
Puan
Defining logic relationships among linear inequalities and has effective reduction algorithms.
Example
Here defining a relation between id 0, 1 and 2 saying that value of id 0 is dependent on value on id 1 and 2.
use puanrs::Theory;
use puanrs::Statement;
use puanrs::AtLeast;
use puanrs::Variable;
use puanrs::GeLineq;
let theory: Theory = Theory {
id : String::from("A"),
statements : vec![
Statement {
variable : Variable {
id : 0,
bounds : (0,1),
},
expression : Some(
AtLeast {
ids : vec![1,2],
bias : -1,
}
)
},
Statement {
variable : Variable {
id : 1,
bounds : (0,1),
},
expression : None
},
Statement {
variable : Variable {
id : 2,
bounds : (0,1),
},
expression : None
},
]
};
let actual: Vec<GeLineq> = theory.to_lineqs();
assert_eq!(actual.len(), 1);
assert_eq!(actual[0].bias, 0);
assert_eq!(actual[0].coeffs, vec![-1,1,1]);
assert_eq!(actual[0].indices, vec![0,1,2]);
If A=0, x=1, y=2
(with 0, 1, 2 here being variable id's), we could express above as A=x+y>=1
.
Dependencies
~425KB