3 releases
Uses new Rust 2024
new 0.0.3 | May 24, 2025 |
---|---|
0.0.2 | May 24, 2025 |
0.0.1 | May 24, 2025 |
#360 in Parser implementations
265KB
5K
SLoC
NPPES Data Library
A comprehensive Rust library for working with National Plan and Provider Enumeration System (NPPES) healthcare provider data.
Overview
The NPPES dataset contains information about healthcare providers in the United States, including:
- ~8 million healthcare provider records
- 330+ data columns including NPI numbers, provider information, taxonomy codes
- Entity types: Individual providers (code 1) vs Organizations (code 2)
- Healthcare provider taxonomy codes for specialties
- Geographic information and licensing data
Features
- Type-safe data structures for all NPPES file formats
- CSV parsing and loading with validation and error handling
- Analytics and querying functionality for data analysis
- Schema validation against official NPPES documentation
- Support for all NPPES reference files (Other Names, Practice Locations, Endpoints)
NPPES Data Files Supported
Main Data File
- File:
npidata_pfile_yyyymmdd-yyyymmdd.csv
(9.9GB) - Contains: ~8M healthcare provider records with 330+ columns
Reference Files
- Other Name Reference: Additional organization names for Type 2 NPIs
- Practice Location Reference: Non-primary practice locations
- Endpoint Reference: Healthcare endpoints associated with NPIs
- Taxonomy Reference: Healthcare provider classification codes (NUCC)
Installation
Add this to your Cargo.toml
:
[dependencies]
nppes = "0.0.3
The CLI binary is called npcli
.
Usage
Basic Usage
use nppes::prelude::*;
// Load main NPPES data
let reader = NppesReader::new();
let providers = reader.load_main_data("data/npidata_pfile_20050523-20250511.csv")?;
println!("Loaded {} providers", providers.len());
// Load taxonomy reference data
let taxonomy_data = reader.load_taxonomy_data("data/nucc_taxonomy_250.csv")?;
Command Line Interface (CLI)
You can use the CLI tool npcli
to download, query, and export NPPES data.
Example: Download the latest NPPES data
npcli download --out-dir ./data
Example: Show statistics for a dataset
npcli stats --data-dir ./data
Example: Query providers by state and specialty
npcli query --data-dir ./data --state CA --specialty Cardiology
Example: Export data to JSON
npcli export --data-dir ./data --output ca_cardiologists.json --format json --state CA --specialty Cardiology
Analytics and Querying
use nppes::prelude::*;
// Create analytics engine
let analytics = NppesAnalytics::new(&providers)
.with_taxonomy_reference(&taxonomy_data);
// Get dataset statistics
let stats = analytics.dataset_stats();
stats.print_summary();
// Find providers by state
let ca_providers = analytics.find_by_state("CA");
println!("California providers: {}", ca_providers.len());
// Find providers by taxonomy code
let physicians = analytics.find_by_taxonomy_code("208600000X");
println!("Internal Medicine physicians: {}", physicians.len());
// Complex queries with builder pattern
let query_results = ProviderQuery::new(&analytics)
.entity_type(EntityType::Individual)
.state("NY")
.active_only()
.execute();
println!("Active individual providers in NY: {}", query_results.len());
Working with Individual Records
use nppes::prelude::*;
// Find a specific provider by NPI
let npi = Npi::new("1234567890".to_string())?;
if let Some(provider) = analytics.find_by_npi(&npi) {
println!("Provider: {}", provider.display_name());
println!("Entity Type: {:?}", provider.entity_type);
println!("Active: {}", provider.is_active());
// Get primary taxonomy
if let Some(primary_taxonomy) = provider.primary_taxonomy() {
println!("Primary specialty: {}", primary_taxonomy.code);
}
}
Data Enrichment
use nppes::prelude::*;
// Enrich providers with human-readable taxonomy descriptions
let enriched_providers = analytics.enrich_with_taxonomy_descriptions()?;
for enriched in enriched_providers.iter().take(10) {
println!("Provider: {}", enriched.provider.display_name());
for taxonomy in &enriched.enriched_taxonomies {
if let Some(display_name) = &taxonomy.display_name {
println!(" Specialty: {}", display_name);
}
}
}
Advanced Analytics
use nppes::prelude::*;
// Get top states by provider count
let top_states = analytics.top_states_by_provider_count(10);
for (state, count) in top_states {
println!("{}: {} providers", state, count);
}
// Get top specialties
let top_specialties = analytics.top_taxonomy_codes_by_provider_count(10);
for (code, count) in top_specialties {
if let Some(taxonomy_ref) = analytics.get_taxonomy_description(&code) {
if let Some(display_name) = &taxonomy_ref.display_name {
println!("{}: {} providers", display_name, count);
}
}
}
// Date-based queries
use chrono::NaiveDate;
let start_date = NaiveDate::from_ymd_opt(2023, 1, 1).unwrap();
let end_date = NaiveDate::from_ymd_opt(2023, 12, 31).unwrap();
let new_providers = analytics.providers_enumerated_between(start_date, end_date);
println!("Providers enumerated in 2023: {}", new_providers.len());
Configuration Options
Reader Configuration
use nppes::prelude::*;
let reader = NppesReader::new()
.with_header_validation(true) // Validate CSV headers (default: true)
.with_skip_invalid_records(false); // Skip invalid records (default: false)
Error Handling
The library uses a comprehensive error system:
use nppes::prelude::*;
match reader.load_main_data("invalid_path.csv") {
Ok(providers) => println!("Loaded {} providers", providers.len()),
Err(NppesError::FileNotFound(path)) => {
eprintln!("File not found: {}", path);
}
Err(NppesError::CsvParse(msg)) => {
eprintln!("CSV parsing error: {}", msg);
}
Err(NppesError::DataValidation(msg)) => {
eprintln!("Data validation error: {}", msg);
}
Err(e) => eprintln!("Other error: {}", e),
}
Data Structures
Core Types
NppesRecord
: Main provider record with all NPPES dataEntityType
: Individual vs Organization provider typeNpi
: Type-safe NPI number wrapperTaxonomyCode
: Healthcare specialty/taxonomy informationAddress
: Mailing and practice location addresses
Reference Types
TaxonomyReference
: Healthcare taxonomy lookup dataOtherNameRecord
: Additional organization namesPracticeLocationRecord
: Secondary practice locationsEndpointRecord
: Healthcare endpoints
Performance Considerations
- The main NPPES file is 9.9GB with ~8M records
- Recommend 16GB+ RAM for full dataset processing
- Use streaming or chunked processing for memory-constrained environments
- Consider creating indexes for frequently queried fields
License
MIT License
Contributing
Contributions welcome! Please see CONTRIBUTING.md for guidelines.
Dependencies
~10–57MB
~892K SLoC