1 unstable release
0.1.0 | Aug 29, 2024 |
---|
#436 in Simulation
27KB
279 lines
ndlife-rs
ndlife is an implementation of infinite, N-dimensional game of life in Rust.
A game of life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. The game is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial configuration and observing how it evolves. This crate extends the game of life to N dimensions, where N is any positive integer.
Example
use std::collections::HashSet;
use ndlife::Life;
// setup conway's game of life
let mut birth_rules = HashSet::with_capacity(1);
birth_rules.insert(3);
let mut survival_rules = HashSet::with_capacity(2);
survival_rules.insert(2);
survival_rules.insert(3);
let mut life = Life::<2>::new(birth_rules, survival_rules).unwrap();
// or use shortcut
// let mut life = conways_game_of_life();
// glider pattern
let mut alive_cells = HashSet::with_capacity(5);
alive_cells.insert([0, 0]);
alive_cells.insert([1, 0]);
alive_cells.insert([2, 0]);
alive_cells.insert([2, 1]);
alive_cells.insert([1, 2]);
// set initial state
life.set_alive_cells(alive_cells);
// advance life by 4 generations (repeat cycle for glider)
for _ in 0..4 {
life.next_generation();
}
// glider moves one cell diagonally (right-down) every 4 generations
let mut expected_alive_cells = HashSet::with_capacity(5);
expected_alive_cells.insert([1, -1]);
expected_alive_cells.insert([2, -1]);
expected_alive_cells.insert([3, -1]);
expected_alive_cells.insert([3, 0]);
expected_alive_cells.insert([2, 1]);
// assert that is indeed what happened
assert_eq!(life.alive_cells(), &expected_alive_cells);