45 releases

new 0.3.1 Jan 10, 2025
0.3.0 Jan 10, 2025
0.2.5 Jan 8, 2025
0.1.37 Jan 7, 2025
0.1.5 Dec 29, 2024

#168 in Algorithms

Download history 314/week @ 2024-12-27 3350/week @ 2025-01-03

3,664 downloads per month

AGPL-3.0

1MB
996 lines

Nabla-ML

Nabla-ML is a Rust library inspired by NumPy, providing a multi-dimensional array implementation with various mathematical and array manipulation functionalities.

Features

  • Array Creation: Create 1D and 2D arrays using vectors and matrices.
  • Random Arrays: Generate arrays with random numbers, including uniform and normal distributions.
  • Arithmetic Operations: Perform element-wise addition, subtraction, multiplication, and division.
  • Mathematical Functions: Apply functions like square root, exponential, sine, cosine, logarithm, hyperbolic tangent, ReLU, Leaky ReLU, and Sigmoid to arrays.
  • Array Reshaping: Change the shape of arrays while maintaining data integrity.
  • File I/O: Save and load arrays in a compressed format.
  • Linear Regression: Perform linear regression using gradient descent.
  • MNIST Dataset Handling: Convert and load MNIST data for machine learning tasks.

Usage

Array Creation

use nabla_ml::NDArray;

let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
let matrix = NDArray::from_matrix(vec![
    vec![1.0, 2.0, 3.0],
    vec![4.0, 5.0, 6.0],
]);

Random Arrays

use nabla_ml::NDArray;

let random_array = NDArray::randn(5);
let random_matrix = NDArray::randn_2d(3, 3);

Mathematical Functions

use nabla_ml::NDArray;

let arr = NDArray::from_vec(vec![0.0, 1.0, -1.0]);
let sqrt_arr = arr.sqrt();
let exp_arr = arr.exp();
let tanh_arr = arr.tanh();
let relu_arr = arr.relu();
let leaky_relu_arr = arr.leaky_relu(0.01);
let sigmoid_arr = arr.sigmoid();

File I/O with .nab Format

use nabla_ml::{NDArray, save_nab, load_nab};

let array = NDArray::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
save_nab("data.nab", &array).expect("Failed to save array");

let loaded_array = load_nab("data.nab").expect("Failed to load array");
assert_eq!(array.data(), loaded_array.data());
assert_eq!(array.shape(), loaded_array.shape());

Linear Regression

use nabla_ml::NDArray;

let X = NDArray::from_matrix(vec![
    vec![0.0, 0.0],
    vec![1.0, 0.0],
    vec![0.0, 1.0],
    vec![1.0, 1.0],
]);
let y = NDArray::from_vec(vec![1.0, 2.0, 3.0, 4.0]);

let (theta, history) = NDArray::linear_regression(&X, &y, 0.01, 1000);
println!("Parameters: {:?}", theta);

MNIST Dataset Handling

use nabla_ml::NDArray;

NDArray::mnist_csv_to_nab(
    "csv/mnist_test.csv",
    "datasets/mnist_test_images.nab",
    "datasets/mnist_test_labels.nab",
    vec![28, 28]
).expect("Failed to convert MNIST CSV to NAB format");

let ((train_images, train_labels), (test_images, test_labels)) = 
    NDArray::load_and_split_dataset("datasets/mnist_test", 80.0).expect("Failed to load and split dataset");

Mnist dataset in .nab format can be found here

One-Hot Encoding

use nabla_ml::NDArray;

// Convert labels to one-hot encoded format
let labels = vec![0, 1, 2, 1, 0];
let one_hot = NDArray::one_hot_encode(&labels);

// Result will be a 2D NDArray:
// [1, 0, 0]  # Class 0
// [0, 1, 0]  # Class 1
// [0, 0, 1]  # Class 2
// [0, 1, 0]  # Class 1
// [1, 0, 0]  # Class 0

ReLU Leaky ReLU Sigmoid Loss History Linear Regression MNIST - 42

License

This project is licensed under the AGPL-3.0 License - see the LICENSE file for details.

Dependencies

~3–4MB
~67K SLoC