3 releases (breaking)

Uses old Rust 2015

0.3.0 Mar 9, 2019
0.2.0 Jan 25, 2018
0.1.0 Jan 14, 2018

#6 in #monte

42 downloads per month

MIT license

46KB
1K SLoC

mcts

This is a library for Monte Carlo tree search (MCTS) in Rust.

The implementation is parallel and lock-free. The generic design allows it to be used in a wide variety of domains. It can accomodate different search methodologies (for example, rollout-based or neural-net-based leaf evaluation).

Documentation


lib.rs:

This is a library for Monte Carlo tree search.

It is still under development and the documentation isn't good. However, the following example may be helpful:

use mcts::*;
use mcts::tree_policy::*;
use mcts::transposition_table::*;

// A really simple game. There's one player and one number. In each move the player can
// increase or decrease the number. The player's score is the number.
// The game ends when the number reaches 100.
// 
// The best strategy is to increase the number at every step.

#[derive(Clone, Debug, PartialEq)]
struct CountingGame(i64);

#[derive(Clone, Debug, PartialEq)]
enum Move {
    Add, Sub
}

impl GameState for CountingGame {
    type Move = Move;
    type Player = ();
    type MoveList = Vec<Move>;

    fn current_player(&self) -> Self::Player {
        ()
    }
    fn available_moves(&self) -> Vec<Move> {
        let x = self.0;
        if x == 100 {
            vec![]
        } else {
            vec![Move::Add, Move::Sub]
        }
    }
    fn make_move(&mut self, mov: &Self::Move) {
        match *mov {
            Move::Add => self.0 += 1,
            Move::Sub => self.0 -= 1,
        }
    }
}

impl TranspositionHash for CountingGame {
    fn hash(&self) -> u64 {
        self.0 as u64
    }
}

struct MyEvaluator;

impl Evaluator<MyMCTS> for MyEvaluator {
    type StateEvaluation = i64;

    fn evaluate_new_state(&self, state: &CountingGame, moves: &Vec<Move>,
        _: Option<SearchHandle<MyMCTS>>)
        -> (Vec<()>, i64) {
        (vec![(); moves.len()], state.0)
    }
    fn interpret_evaluation_for_player(&self, evaln: &i64, _player: &()) -> i64 {
        *evaln
    }
    fn evaluate_existing_state(&self, _: &CountingGame,  evaln: &i64, _: SearchHandle<MyMCTS>) -> i64 {
        *evaln
    }
}

#[derive(Default)]
struct MyMCTS;

impl MCTS for MyMCTS {
    type State = CountingGame;
    type Eval = MyEvaluator;
    type NodeData = ();
    type ExtraThreadData = ();
    type TreePolicy = UCTPolicy;
    type TranspositionTable = ApproxTable<Self>;

    fn cycle_behaviour(&self) -> CycleBehaviour<Self> {
        CycleBehaviour::UseCurrentEvalWhenCycleDetected
    }
}

let game = CountingGame(0);
let mut mcts = MCTSManager::new(game, MyMCTS, MyEvaluator, UCTPolicy::new(0.5),
    ApproxTable::new(1024));
mcts.playout_n_parallel(10000, 4); // 10000 playouts, 4 search threads
mcts.tree().debug_moves();
assert_eq!(mcts.best_move().unwrap(), Move::Add);
assert_eq!(mcts.principal_variation(50),
    vec![Move::Add; 50]);
assert_eq!(mcts.principal_variation_states(5),
    vec![
        CountingGame(0),
        CountingGame(1),
        CountingGame(2),
        CountingGame(3),
        CountingGame(4),
        CountingGame(5)]);

Dependencies

~470–660KB