3 releases
Uses new Rust 2024
0.1.2 | May 29, 2025 |
---|---|
0.1.1 | May 29, 2025 |
0.1.0 | May 28, 2025 |
#142 in Programming languages
570KB
11K
SLoC
MathCompile
Symbolic mathematics compiler for Rust
Transform symbolic mathematical expressions into optimized native code with automatic differentiation support.
Overview
MathCompile provides a compilation pipeline for mathematical expressions:
- Symbolic optimization using algebraic simplification before compilation
- Native code generation through Rust's compiler or optional Cranelift JIT
- Automatic differentiation with shared subexpression optimization
- Final tagless design for type-safe, extensible expression building
Core Capabilities
Expression Building and Optimization
use mathcompile::prelude::*;
// Define symbolic expression
let mut math = MathBuilder::new();
let x = math.var("x");
let expr = math.poly(&[1.0, 2.0, 3.0], &x); // 1 + 2x + 3x² (coefficients in ascending order)
// Algebraic simplification
let optimized = math.optimize(&expr)?;
// Direct evaluation (fastest for immediate use)
let result = DirectEval::eval_with_vars(&optimized, &[3.0]); // x = 3.0
assert_eq!(result, 34.0); // 1 + 2*3 + 3*9 = 34
// Generate Rust code for compilation
let codegen = RustCodeGenerator::new();
let rust_code = codegen.generate_function(&optimized, "my_function")?;
// Compile and load the function
let compiler = RustCompiler::new();
let compiled_func = compiler.compile_and_load(&rust_code, "my_function")?;
let compiled_result = compiled_func.call(3.0)?;
assert_eq!(compiled_result, 34.0);
Automatic Differentiation
// Define function using MathBuilder
let mut math = MathBuilder::new();
let x = math.var("x");
let f = math.poly(&[1.0, 2.0, 1.0], &x); // 1 + 2x + x²
// Convert to optimized AST
let optimized_f = math.optimize(&f)?;
// Compute function and derivatives
let mut ad = SymbolicAD::new()?;
let result = ad.compute_with_derivatives(&optimized_f)?;
println!("f(x) = 1 + 2x + x²");
println!("f'(x) = 2 + 2x (computed symbolically)");
println!("Shared subexpressions: {}", result.stats.shared_subexpressions_count);
Multiple Compilation Backends
// Rust code generation (primary backend)
let codegen = RustCodeGenerator::new();
let rust_code = codegen.generate_function(&optimized, "my_func")?;
let compiler = RustCompiler::new();
let compiled_func = compiler.compile_and_load(&rust_code, "my_func")?;
let result = compiled_func.call(3.0)?;
// Cranelift JIT (optional, requires "cranelift" feature)
#[cfg(feature = "cranelift")]
{
let compiler = JITCompiler::new()?;
let jit_func = compiler.compile_single_var(&optimized, "x")?;
let jit_result = jit_func.call_single(3.0);
}
Installation
Add to your Cargo.toml
:
[dependencies]
mathcompile = "0.1"
# Optional: Enable Cranelift JIT backend
# mathcompile = { version = "0.1", features = ["cranelift"] }
Basic Usage
use mathcompile::prelude::*;
// Create mathematical expressions
let mut math = MathBuilder::new();
let x = math.var("x");
let expr = math.add(
&math.add(&math.mul(&x, &x), &math.mul(&math.constant(2.0), &x)),
&math.constant(1.0)
); // x² + 2x + 1
// Optimize symbolically
let optimized = math.optimize(&expr)?;
// Evaluate efficiently
let result = DirectEval::eval_with_vars(&optimized, &[3.0]); // x = 3.0
assert_eq!(result, 16.0); // 9 + 6 + 1
// Generate and compile Rust code
let codegen = RustCodeGenerator::new();
let rust_code = codegen.generate_function(&optimized, "quadratic")?;
let compiler = RustCompiler::new();
let compiled_func = compiler.compile_and_load(&rust_code, "quadratic")?;
let compiled_result = compiled_func.call(3.0)?;
assert_eq!(compiled_result, 16.0);
// JIT compilation (if cranelift feature enabled)
#[cfg(feature = "cranelift")]
{
let compiler = JITCompiler::new()?;
let compiled = compiler.compile_single_var(&optimized, "x")?;
let jit_result = compiled.call_single(3.0);
assert_eq!(jit_result, 16.0);
}
Documentation
- Developer Notes - Architecture overview and expression types
- Roadmap - Project status and planned features
- Examples - Usage examples and demonstrations
- API Documentation - Complete API reference
Architecture
MathCompile uses a final tagless approach to solve the expression problem:
- Extensible operations - Add new mathematical functions without modifying existing code
- Multiple interpreters - Same expressions work with evaluation, optimization, and compilation
- Type safety - Compile-time guarantees for mathematical operations
┌─────────────────────────────────────────────────────────────┐
│ Expression Building │
│ (Final Tagless Design + Ergonomic API) │
└─────────────────────┬───────────────────────────────────────┘
│
┌─────────────────────▼───────────────────────────────────────┐
│ Symbolic Optimization │
│ (Algebraic Simplification + Egglog Integration) │
└─────────────────────┬───────────────────────────────────────┘
│
┌─────────────────────▼───────────────────────────────────────┐
│ Compilation Backends │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────┐ │
│ │ Rust │ │ Cranelift │ │ Future Backends │ │
│ │ Hot-Loading │ │ JIT │ │ (LLVM, etc.) │ │
│ │ (Primary) │ │ (Optional) │ │ │ │
│ └─────────────┘ └─────────────┘ └─────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
Features
- 🔥 Final Tagless Design: Type-safe expression building with multiple interpreters
- ⚡ Symbolic Optimization: Advanced algebraic simplification using egglog
- 🚀 Multiple Backends: Rust hot-loading (primary) and optional Cranelift JIT
- 🧮 Automatic Differentiation: Forward and reverse mode with symbolic optimization
- 📊 Advanced Summation: Multi-dimensional sums with convergence analysis
- 🔬 Domain Analysis: ✨ NEW - Abstract interpretation ensuring mathematical transformations are only applied when valid
- 🏗️ A-Normal Form: Intermediate representation with scope-aware common subexpression elimination
Technical Notes
- Polynomial coefficients: The `
Dependencies
~0.5–17MB
~160K SLoC