1 unstable release
0.2.0 | Aug 25, 2021 |
---|
#464 in Simulation
Used in 4 crates
(2 directly)
9KB
197 lines
lib-rv32
Overview
lib-rv32 is a collection of Rust libraries for emulating, learning, and assembling 32-bit RISC-V integer ISAs.
- lib-rv32-isa: library for ISA simulation
- lib-rv32-mcu: reference implemenation of an MCU used in conjunction with lib_rv32_isa
- lib-rv32-asm: library for assembling RISC-V programs
- lib-rv32-cli: CLI tool exposing the libraries
- [lib-rv32-wasm]: An webapp using the library's WASM bindings.
Libraries
ISA simulator
This library can execute instructions against any memory and register file that implements
the required primitives in the traits lib_rv32_common::traits::{Memory, RegisterFile}
. This is to
encourage usage with whatever frontend you desire.
However, reference implementations are provided in lib_rv32_mcu::*
. The library provides
functions to read from the memory, registers, and step a single instruction. Since, the
user decides when to call these functions, these will probably fit most use-cases.
MCU
The MCU crate provides an implemenation of Memory
and RegisterFile
for use with the ISA
simulator. With this, one can fully emulate an embedded RISC-V core.
Assembler
This crate can be used to assemble simple RISC-V assembly programs. The main functions offered by this library are:
assemble_ir
: assemble an instruction&str
to au32
assemble_program
: assemble a program&str
to aVec<u32>
assemble_program_buf
: assemble aBufRead
to aVec<u32>
CLI
Emulator
The primary use of the emulator is tracing execution of RISC-V programs and making assertions about their behavior. It currently only supports simple binary memory images (not ELF binaries).
Enter assertions into a JSON file (note: all numbers are strings to allow for hex or decimal radices).
assert.json
:
{
"registers": {
"x0": "0x0",
"a0": "20"
},
"memory": {
"0x0000": "0x00010117"
}
}
Then run:
lrv-cli -v ./prog.bin -s 24 -a assert.json
This will execute prog.bin
, stop at the PC value 0x24, and then make the assertions from assert.json
.
The program will trace the execution instruction-by-instruction:
[0000] 00010117 | auipc sp, 0x10 | sp <- 0x10000 (65536);
[0004] fe010113 | addi sp, sp, -32 | sp <- 0xffe0 (65504);
[0008] 00400513 | addi a0, zero, 4 | a0 <- 0x4 (4);
[000c] 00500593 | addi a1, zero, 5 | a1 <- 0x5 (5);
[0010] 00000097 | auipc ra, 0x0 | ra <- 0x10 (16);
[0014] 018080e7 | jalr ra, (24)ra | ra <- 0x18 (24); pc <- 0x28;
...
When complete, it will summarize results:
...
[001c] f0028293 | addi t0, t0, -256 | t0 <- 0xf00 (3840);
[0020] 00a2a023 | sw a0, 0(t0) | (word *)0x00000f00 <- 0x14 (20);
Reached stop-PC.
a0 == 20
*0x00000000 == 65815
Assembler
The CLI also exposes the assembler via the command line. You can assemble the file
program.s
to program.bin
using
lrv-cli -cv program.s -o program.bin
Testing
This project has a very flexible testing system.
Unit-tests are provided wherever appropriate.
Additionally, to test the whole system, test programs can be added to mcu/tests/programs
.
A test is simply a directory containing .c
and .s
source files and a test_case.json
consisting of assertions about the state of the MCU after the program is complete.
During testing, Cargo will for each test:
- Compile it for RISC-V
- Spin up a new MCU
- Program it with the generated binary
- Run the test program for some number of cycles
- Make assertions
- Report succes or failure
If a test fails, it will describe the error that caused the crash or the assertion that failed and print an object dump of the compiled test binary:
...
[001c] f0028293 | addi t0, t0, -256 | t0 <- 0xf00 (3840);
[0020] 00a2a023 | sw a0, 0(t0) | (word *)0x00000f00 <- 0x14 (20);
Stopping because the stop PC 0x24 was reached.
Failed test: tests/programs/mul@0x00000024: Register assertion failed: (x10=0x00000014) != 0x00000018.
prog.elf: file format elf32-littleriscv
Disassembly of section .text.init:
00000000 <start>:
0: 00010117 auipc sp,0x10
4: fe010113 addi sp,sp,-32 # ffe0 <__global_pointer$+0xf75c>
8: 00400513 li a0,4
c: 00500593 li a1,5
...
Tests are run in CI, but can be run locally provided your system has riscv(32|64)-unknown-elf-gcc
.