#leb128 #integer-compression #codec #compression #unsigned-integer #no-alloc

no-std leb128fmt

A library to encode and decode LEB128 compressed integers

1 unstable release

0.1.0 Oct 2, 2023

#1025 in Encoding

MIT/Apache

62KB
770 lines

Leb128fmt

Leb128fmt is a library to decode and encode LEB128 formatted numbers. LEB128 is a variable length integer compression format.

The library does not allocate memory and can be used in no_std and no_std::no_alloc environments.

Various functions are provided which encode and decode signed and unsigned integers with the number of bits in the function name. There are generic functions provided to read and write slices of encoded values as well.

There are encoding functions with the word fixed in the name which will write out a value using the maximum number of bytes for a given bit size. For instance, using encode_fixed_u32 will always use 5 bytes to write out the value. While always using the maximum number of bytes removes the benefit of compression, in some scenarios, it is beneficial to have a fixed encoding size.

Finally, there are macros provided which you can use to build your own encoding and decoding functions for unusual variants like signed 33 bit values.

Installation

cargo add leb128fmt

Examples

Functions using Arrays

// Encode an unsigned 32 bit number:
let (output, written_len) = leb128fmt::encode_u32(43110).unwrap();
// The number of bytes written in the output array
assert_eq!(written_len, 3);
assert_eq!(&output[..written_len], &[0xE6, 0xD0, 0x02]);
// The entire output array. Note you should only use &output[..written_len] to copy
// into your output buffer
assert_eq!(output, [0xE6, 0xD0, 0x02, 0x00, 0x00]);

// Decode an unsigned 32 bit number:
let input = [0xE6, 0xD0, 0x02, 0x00, 0x00];
let (result, read_len) = leb128fmt::decode_u32(input).unwrap();
assert_eq!(result, 43110);
assert_eq!(read_len, 3);

Helper Functions

If you are reading from an input buffer, you can use is_last and max_len to determine the bytes to copy into the array.

let buffer = vec![0xFE, 0xFE, 0xE6, 0xD0, 0x02, 0xFE, 0xFE, 0xFE];
let pos = 2;
let end = buffer.iter().skip(pos).copied().position(leb128fmt::is_last).map(|p| pos + p);
if let Some(end) = end {
    if end <= pos + leb128fmt::max_len::<32>() {
        let mut input = [0u8; leb128fmt::max_len::<32>()];
        input[..=end - pos].copy_from_slice(&buffer[pos..=end]);
        let (result, read_len) = leb128fmt::decode_u32(input).unwrap();
        assert_eq!(result, 43110);
        assert_eq!(read_len, 3);
    } else {
        // invalid LEB128 encoding
        panic!();
    }
} else {
  if buffer.len() - pos < leb128fmt::max_len::<32>() {
     // Need more bytes in the buffer
     panic!();
  } else {
     // invalid LEB128 encoding
     panic!();
  }
}

Functions Using Slices

let mut buffer = vec![0xFE; 10];
let mut pos = 1;

// Encode an unsigned 64 bit number with a mutable slice:
let result = leb128fmt::encode_uint_slice::<u64, 64>(43110u64, &mut buffer, &mut pos);
// The number of bytes written in the output array
assert_eq!(result, Some(3));
assert_eq!(pos, 4);

assert_eq!(buffer, [0xFE, 0xE6, 0xD0, 0x02, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE]);

// Decode an unsigned 64 bit number with a slice:
pos = 1;
let result = leb128fmt::decode_uint_slice::<u64, 64>(&buffer, &mut pos);
assert_eq!(result, Ok(43110));
assert_eq!(pos, 4);

Functions Using Fixed Sized Encoding

There may be several different ways to encode a value. For instance, 0 can be encoded as 32 bits unsigned:

let mut pos = 0;
assert_eq!(leb128fmt::decode_uint_slice::<u32, 32>(&[0x00], &mut pos), Ok(0));
pos = 0;
assert_eq!(leb128fmt::decode_uint_slice::<u32, 32>(&[0x80, 0x00], &mut pos), Ok(0));
pos = 0;
assert_eq!(leb128fmt::decode_uint_slice::<u32, 32>(&[0x80, 0x80, 0x00], &mut pos), Ok(0));
pos = 0;
assert_eq!(leb128fmt::decode_uint_slice::<u32, 32>(&[0x80, 0x80, 0x80, 0x00], &mut pos), Ok(0));
pos = 0;
assert_eq!(leb128fmt::decode_uint_slice::<u32, 32>(&[0x80, 0x80, 0x80, 0x80, 0x00], &mut pos), Ok(0));

There are functions provided to encode a value using the maximum number of bytes possible for a given bit size. Using the maximum number of bytes removes the benefit of compression, but it may be useful in a few scenarios.

For instance, if a binary format needs to store the size or offset of some data before the size of data is known, it can be beneficial to write a fixed sized 0 placeholder value first. Then, once the real value is known, the 0 placeholder can be overwritten without moving other bytes. The real value is also written out using the fixed maximum number of bytes.

// Encode an unsigned 32 bit number with all 5 bytes:
let output  = leb128fmt::encode_fixed_u32(43110).unwrap();
assert_eq!(output, [0xE6, 0xD0, 0x82, 0x80, 0x00]);

// Decode an unsigned 32 bit number:
let input = output;
let (result, read_len) = leb128fmt::decode_u32(input).unwrap();
assert_eq!(result, 43110);

// Note that all 5 bytes are read
assert_eq!(read_len, 5);

License

Licensed under either of Apache License, Version 2.0 or MIT License at your option.

Contributions

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.

No runtime deps

Features