2 releases
0.0.2 | Dec 24, 2020 |
---|---|
0.0.1 | Dec 24, 2020 |
#1528 in Data structures
15KB
337 lines
kdtree
k-dimensional tree data structure implemented with const generics, used for finding k-nearest neighbours (KNN).
Example Usage
use kdt::*;
use ordered_float::OrderedFloat;
use rand::{thread_rng, Rng};
fn main() {
let mut points = {
let mut rng = thread_rng();
(0..100)
.map(|_| {
Point([
rng.gen_range(-50.0..50.0),
rng.gen_range(-50.0..50.0),
rng.gen_range(-50.0..50.0),
])
})
.collect::<Vec<_>>()
};
let kdt = KdTree::from_slice(&mut points);
let query = Point([0.0, 0.0, 0.0]);
let nearest = kdt
.k_nearest_neighbors(&query, 10)
.into_iter()
// each point is returned as a reference. In most use cases you don't need to `clone`
.map(|(dist, point)| (dist, point.clone()))
// by default results are sorted in descending order of squared Eucledian distance to the query point
.rev()
.collect::<Vec<_>>();
// compute by brutal force
let mut expected = points
.into_iter()
.map(|p| (p.squared_eucledian(&query), p))
.collect::<Vec<_>>();
expected.sort_unstable_by_key(|p| OrderedFloat(p.0));
assert_eq!(&nearest[..], &expected[..10]);
}
Dependencies
~555KB