4 releases
Uses new Rust 2024
| 0.2.0 | Oct 17, 2025 |
|---|---|
| 0.1.2 | Oct 14, 2025 |
| 0.1.1 | Oct 3, 2025 |
| 0.1.0 | Sep 20, 2025 |
#288 in Math
349 downloads per month
2MB
17K
SLoC
grid1d
One-dimensional grids and interval partitions with mathematical rigor and performance optimization.
grid1d is a comprehensive Rust library for representing and manipulating one-dimensional grids, interval partitions and interval arithmetic with strong mathematical foundations, type safety, and performance optimizations. Designed for numerical computations, finite element methods, adaptive mesh refinement, and scientific computing applications requiring robust 1D spatial discretizations.
๐ฏ Key Features
Mathematical Correctness First
- Type-safe intervals: Different interval types (
[a,b],(a,b), etc.) encode boundary semantics at compile time - Domain validation: Runtime checks ensure grids completely partition their specified domains
- Proper boundary handling: Open/closed boundary semantics correctly preserved in all operations
- Generic scalar support: Works with any scalar type implementing
num_valid::RealScalar
Multiple Floating-Point Backends
grid1d leverages the num-valid library to provide multiple numerical backends with different precision and performance characteristics:
| Backend | Scalar Type | Precision | Performance | Best For |
|---|---|---|---|---|
| Native | f64 |
53 bits | โกโกโก Maximum | Production simulations, real-time |
| Native Validated (Debug) | RealNative64StrictFiniteInDebug |
53 bits | โกโกโก Same as f64 |
Recommended for most applications |
| Native Validated | RealNative64StrictFinite |
53 bits | โกโก Small overhead | Safety-critical applications |
| Arbitrary Precision | RealRugStrictFinite<N> |
N bits | โก Configurable | Scientific research, symbolic math |
Performance Through Specialization
- Uniform grids: O(1) point location with analytical formulas
- Non-uniform grids: O(log n) binary search with optimized data structures
- Memory efficiency: Zero-cost abstractions and cache-friendly memory layouts
- SIMD-ready: Regular patterns enable vectorization optimizations
Advanced Grid Operations
- Adaptive mesh refinement: Uniform and selective refinement with bidirectional mappings
- Grid union: Combine grids from different physics for multi-physics simulations
- Interval arithmetic: Complete set of interval operations with proper boundary handling
- Type-safe scalars: Prevent common numerical bugs with validated scalar types
๐ Quick Start
Prerequisites
This library requires Rust nightly for advanced language features:
# rust-toolchain.toml (automatically configured)
[toolchain]
channel = "nightly"
Why nightly is required:
- Advanced error handling (
#![feature(error_generic_member_access)]): Better debugging and error context - Future optimizations: Enables cutting-edge Rust developments for numerical computing
Installation
Add this to your Cargo.toml:
[dependencies]
grid1d = "0.1.2" # Change to the latest version
try_create = "0.1.2" # Required for TryNew trait
sorted-vec = "0.8" # Required for non-uniform grids
# For arbitrary precision arithmetic (optional)
grid1d = { version = "0.1.2", features = ["rug"] }
num-valid = { version = "0.2.1", features = ["rug"] }
Your First Grid: Complete Tutorial
Let's build a complete example from scratch, step by step:
Step 1: Create a Simple Uniform Grid
use grid1d::{Grid1D, intervals::IntervalClosed, scalars::NumIntervals};
use try_create::TryNew;
fn main() {
// Define the domain: [0, 10]
let domain = IntervalClosed::new(0.0, 10.0);
// Create a grid with 10 equal intervals
let grid = Grid1D::uniform(domain, NumIntervals::try_new(10).unwrap());
// Grid has 11 points: 0, 1, 2, ..., 10
println!("Grid has {} points", grid.coords().len());
}
Step 2: Locate Points in the Grid
use grid1d::{Grid1D, IntervalPartition, intervals::IntervalClosed, scalars::NumIntervals};
use try_create::TryNew;
fn main() {
let domain = IntervalClosed::new(0.0, 10.0);
let grid = Grid1D::uniform(domain, NumIntervals::try_new(10).unwrap());
// Find which interval contains a point
let point = 3.7;
let interval_id = grid.find_interval_id_of_point(&point);
println!("Point {} is in interval {}", point, interval_id.as_ref());
// Get the actual interval
let interval = grid.interval(&interval_id);
println!("Interval: {:?}", interval);
// Get interval length
let length = grid.interval_length(&interval_id);
println!("Interval length: {}", length.as_ref());
}
Step 3: Work with Non-Uniform Grids
use grid1d::{Grid1D, intervals::IntervalClosed};
use sorted_vec::partial::SortedSet;
fn main() {
// Custom point distribution (e.g., clustered near x=0)
let coords = SortedSet::from_unsorted(vec![
0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0
]);
let domain = IntervalClosed::new(0.0, 10.0);
let grid = Grid1D::try_from_sorted(domain, coords).unwrap();
println!("Non-uniform grid with {} intervals", grid.num_intervals().as_ref());
}
Step 4: Choose the Right Scalar Type
use grid1d::{Grid1D, intervals::IntervalClosed, scalars::NumIntervals};
use num_valid::RealNative64StrictFiniteInDebug;
use try_create::TryNew;
fn main() {
// Use validated types for safety (recommended)
type Real = RealNative64StrictFiniteInDebug;
let domain = IntervalClosed::new(
Real::try_new(0.0).unwrap(),
Real::try_new(10.0).unwrap()
);
let grid = Grid1D::uniform(domain, NumIntervals::try_new(10).unwrap());
// This will catch NaN/Infinity in debug builds
let safe_point = Real::try_new(3.7).unwrap();
let interval_id = grid.find_interval_id_of_point(&safe_point);
}
Decision Guide: Which Grid Type Should I Use?
// โ
Use Grid1DUniform when:
// - All intervals have equal spacing
// - Maximum performance is critical (O(1) point location)
// - Regular discretization (e.g., finite differences on uniform mesh)
use grid1d::{Grid1D, intervals::IntervalClosed, scalars::NumIntervals};
use try_create::TryNew;
let uniform = Grid1D::uniform(
IntervalClosed::new(0.0, 1.0),
NumIntervals::try_new(100).unwrap()
);
// โ
Use Grid1DNonUniform when:
// - Adaptive spacing needed (e.g., boundary layers, shock capturing)
// - Point clustering in regions of interest
// - Arbitrary point distributions
use sorted_vec::partial::SortedSet;
let clustered_coords = SortedSet::from_unsorted(vec![/* custom distribution */]);
let non_uniform = Grid1D::try_from_sorted(
IntervalClosed::new(0.0, 1.0),
clustered_coords
).unwrap();
// โ
Use Grid1DUnion when:
// - Combining grids from multiple physics or solvers
// - Multi-physics simulations with different discretizations
// - Need to maintain mappings between original and unified grids
let grid_a = Grid1D::uniform(/* ... */);
let grid_b = Grid1D::uniform(/* ... */);
// let union = Grid1DUnion::try_new(&grid_a, &grid_b).unwrap();
Decision Guide: Which Scalar Type Should I Use?
| Your Need | Recommended Type | Example |
|---|---|---|
| Maximum performance, trusted inputs | f64 |
Production code with validated inputs |
| โญ Recommended default | RealNative64StrictFiniteInDebug |
Development + production (same performance as f64) |
| Safety-critical applications | RealNative64StrictFinite |
Medical, aerospace, financial |
| Arbitrary precision needed | RealRugStrictFinite<N> |
Scientific computing, symbolic math |
// Maximum performance
let fast_domain = IntervalClosed::new(0.0_f64, 1.0_f64);
// Recommended: Safe in debug, fast in release
use num_valid::RealNative64StrictFiniteInDebug;
type Real = RealNative64StrictFiniteInDebug;
let safe_domain = IntervalClosed::new(
Real::try_new(0.0).unwrap(),
Real::try_new(1.0).unwrap()
);
// Always validated
use num_valid::RealNative64StrictFinite;
type SafeReal = RealNative64StrictFinite;
let validated_domain = IntervalClosed::new(
SafeReal::try_new(0.0).unwrap(),
SafeReal::try_new(1.0).unwrap()
);
Basic Usage
use grid1d::{
Grid1D, IntervalPartition, HasCoords1D,
intervals::IntervalClosed,
scalars::{NumIntervals, IntervalId},
};
use sorted_vec::partial::SortedSet;
use std::ops::Deref; // Needed for .deref()
use try_create::TryNew; // Needed for .try_new()
// Create uniform grid with equal spacing
let domain = IntervalClosed::new(0.0, 1.0);
let uniform_grid = Grid1D::uniform(domain.clone(), NumIntervals::try_new(4).unwrap());
assert_eq!(uniform_grid.coords().deref(), &[0.0, 0.25, 0.5, 0.75, 1.0]);
// Create non-uniform grid with custom spacing
let coords = SortedSet::from_unsorted(vec![0.0, 0.1, 0.5, 0.9, 1.0]);
let non_uniform_grid = Grid1D::try_from_sorted(domain, coords).unwrap();
// Both grids implement the same IntervalPartition trait
assert_eq!(uniform_grid.num_intervals().as_ref(), &4);
assert_eq!(non_uniform_grid.num_intervals().as_ref(), &4);
// Efficient point location
let interval_id = uniform_grid.find_interval_id_of_point(&0.3);
let interval = uniform_grid.interval(&interval_id);
Working with Different Scalar Types
use grid1d::{Grid1D, intervals::IntervalClosed, scalars::NumIntervals};
use num_valid::{RealNative64StrictFiniteInDebug, RealNative64StrictFinite};
use try_create::TryNew;
// Performance-optimal with debug safety (recommended)
type OptimalReal = RealNative64StrictFiniteInDebug;
let optimal_grid = Grid1D::uniform(
IntervalClosed::new(
OptimalReal::try_new(0.0).unwrap(),
OptimalReal::try_new(1.0).unwrap()
),
NumIntervals::try_new(4).unwrap()
);
// Always validated for safety-critical applications
type SafeReal = RealNative64StrictFinite;
let safe_grid = Grid1D::uniform(
IntervalClosed::new(
SafeReal::try_new(0.0).unwrap(),
SafeReal::try_new(1.0).unwrap()
),
NumIntervals::try_new(4).unwrap()
);
Arbitrary Precision with Rug
For applications requiring arbitrary precision arithmetic:
// Add to Cargo.toml:
// grid1d = { version = "0.1.0", features = ["rug"] }
use grid1d::{Grid1D, intervals::IntervalClosed, scalars::NumIntervals};
use num_valid::RealRugStrictFinite;
use try_create::TryNew;
// 256-bit precision arithmetic
type HighPrecisionReal = RealRugStrictFinite<256>;
let high_precision_grid = Grid1D::uniform(
IntervalClosed::new(
HighPrecisionReal::try_new(0.0).unwrap(),
HighPrecisionReal::try_new(1.0).unwrap()
),
NumIntervals::try_new(4).unwrap()
);
// All grid operations work seamlessly with arbitrary precision
let hp_1 = HighPrecisionReal::try_new(1.0).unwrap();
let hp_3 = HighPrecisionReal::try_new(3.0).unwrap();
let point = hp_1 / hp_3; // 1. / 3.
let interval_id = high_precision_grid.find_interval_id_of_point(&point);
๐ฌ Advanced Features
Adaptive Mesh Refinement
use grid1d::{*, intervals::*, scalars::*};
use std::collections::BTreeMap; // Needed for refinement plan
use try_create::TryNew; // Needed for .try_new()
let base_grid = Grid1D::uniform(IntervalClosed::new(0.0, 1.0), NumIntervals::try_new(4).unwrap());
// Uniform refinement: double resolution everywhere
let uniform_refinement = base_grid.refine_uniform(&PositiveNumPoints1D::try_new(1).unwrap());
assert_eq!(uniform_refinement.refined_grid().num_intervals().as_ref(), &8);
// Selective refinement: refine only specific intervals
let selective_plan = BTreeMap::from([
(IntervalId::new(1), PositiveNumPoints1D::try_new(2).unwrap()), // 3 sub-intervals
(IntervalId::new(3), PositiveNumPoints1D::try_new(1).unwrap()), // 2 sub-intervals
]);
let selective_refinement = uniform_refinement.into_refined_grid().refine(&selective_plan);
Grid Union for Multi-Physics
use grid1d::{*, intervals::*, scalars::*};
use sorted_vec::partial::SortedSet;
use try_create::TryNew; // Needed for .try_new()
let domain = IntervalClosed::new(0.0, 2.0);
// Physics A: coarse global grid
let grid_a = Grid1D::uniform(domain.clone(), NumIntervals::try_new(4).unwrap());
// Physics B: fine local grid
let coords_b = SortedSet::from_unsorted(vec![0.0, 0.3, 0.7, 1.1, 1.4, 2.0]);
let grid_b = Grid1D::try_from_sorted(domain, coords_b).unwrap();
// Create unified grid preserving mappings to both original grids
let union = Grid1DUnion::try_new(&grid_a, &grid_b).unwrap();
println!("Unified grid has {} intervals", union.num_refined_intervals().as_ref());
// Map data between grids
for (refined_id, a_id, b_id) in union.iter_interval_mappings() {
println!("Unified interval {} maps to A[{}] and B[{}]",
refined_id.as_ref(), a_id.as_ref(), b_id.as_ref());
}
Working with Different Interval Types
use grid1d::intervals::*;
let closed = IntervalClosed::new(0.0, 1.0); // [0, 1]
let open = IntervalOpen::new(0.0, 1.0); // (0, 1)
let half_open = IntervalLowerClosedUpperOpen::new(0.0, 1.0); // [0, 1)
let unbounded = IntervalLowerClosedUpperUnbounded::new(0.0); // [0, +โ)
// All implement IntervalTrait for generic operations
assert!(closed.contains_point(&0.0));
assert!(!open.contains_point(&0.0));
๐๏ธ Core Concepts
Grid Types and Performance Characteristics
| Grid Type | Point Location | Memory | Best For |
|---|---|---|---|
Grid1DUniform |
O(1) analytical | O(n) | Equal spacing, maximum performance |
Grid1DNonUniform |
O(log n) binary search | O(n) | Adaptive spacing, complex features |
Grid1DUnion |
O(log n) on unified grid | O(n+m) | Multi-physics, grid combination |
Interval Partition Types
The library correctly handles different interval boundary semantics:
- Closed intervals
[a,b]: Include both endpoints - Open intervals
(a,b): Exclude both endpoints - Semi-open intervals:
[a,b)or(a,b]- include one endpoint - Automatic sub-interval construction: Preserves domain semantics in partitions
Mathematical Properties and Guarantees
Every grid maintains these invariants:
- Complete domain coverage: โ intervals = domain (exact reconstruction)
- Non-overlapping intervals: Intervals are disjoint except at boundaries
- Unique point location: Every domain point belongs to exactly one interval
- Boundary consistency: First/last coordinates match domain bounds exactly
- Sorted coordinates: Points are in strict ascending order
๐ Examples
Finite Difference Methods
use grid1d::{*, intervals::*, scalars::*};
use std::ops::Deref; // Needed for accessing coords
use try_create::TryNew; // Needed for .try_new()
let grid = Grid1D::uniform(IntervalClosed::new(0.0, 1.0), NumIntervals::try_new(100).unwrap());
let coords = grid.coords().deref();
let dx = coords[1] - coords[0];
// Initialize solution vector
let mut solution = vec![0.0; coords.len()];
// ... (set initial/boundary conditions)
// Apply finite difference stencils (interior points only)
for i in 1..coords.len()-1 {
let d2u_dx2 = (solution[i-1] - 2.0*solution[i] + solution[i+1]) / (dx * dx);
// Time stepping or iteration logic...
// e.g., solution_new[i] = solution[i] + dt * d2u_dx2;
}
Spectral Methods
use grid1d::{*, intervals::*, scalars::*};
use try_create::TryNew; // Needed for .try_new()
use std::ops::Deref; // Needed for accessing coords
// Periodic domain for Fourier spectral methods
let domain = IntervalLowerClosedUpperOpen::new(0.0, 2.0 * std::f64::consts::PI);
let grid = Grid1D::uniform(domain, NumIntervals::try_new(256).unwrap());
// Perfect for FFT algorithms
let dx = grid.coords()[1] - grid.coords()[0];
assert!((dx - 2.0 * std::f64::consts::PI / 256.0).abs() < 1e-15);
Boundary Layer Refinement
use grid1d::{*, intervals::*, scalars::*};
use sorted_vec::partial::SortedSet;
// Create boundary layer mesh with fine spacing near walls
fn create_boundary_layer_mesh(domain_length: f64, boundary_thickness: f64)
-> Grid1D<IntervalClosed<f64>>
{
let mut points = vec![0.0];
// Fine spacing in boundary layer
for i in 1..=20 {
let eta = (i as f64) / 20.0;
let y = boundary_thickness * (eta * eta); // Quadratic clustering
points.push(y);
}
// Coarse spacing in outer region
for i in 1..=10 {
let y = boundary_thickness + (domain_length - boundary_thickness) * (i as f64) / 10.0;
points.push(y);
}
Grid1D::try_from_sorted(
IntervalClosed::new(0.0, domain_length),
SortedSet::from_unsorted(points)
).unwrap()
}
let cfd_grid = create_boundary_layer_mesh(1.0, 0.1);
println!("CFD grid: {} intervals", cfd_grid.num_intervals().as_ref());
๐ ๏ธ Development
Building
# Standard build (uses nightly automatically)
cargo build
# With arbitrary precision support
cargo build --features=rug
# Run tests
cargo test
# Run tests with arbitrary precision
cargo test --features=rug
# Generate documentation
cargo doc --open
Requirements
- Rust: Nightly toolchain (specified in
rust-toolchain.toml)
Core Dependencies
num-valid: Validated scalar arithmeticsorted-vec: Efficient sorted container implementationserde: Serialization support for grid structuresnutype: Type-safe wrapper generationderive-more: Ergonomic derive macrosgetset: Automatic getter generation
Optional Dependencies
- [
rug]: Arbitrary precision arithmetic via theruglibrary- Enable with
--features=rug - Provides
num_valid::RealRugStrictFinite<N>types for N-bit precision
- Enable with
๐งช Testing
The library includes comprehensive test suites:
# Run all tests
cargo test
# Run tests with arbitrary precision
cargo test --features=rug
# Run property-based tests
cargo test --test property_tests
# Run benchmarks
cargo bench
Test Coverage
- Unit tests: Core functionality for all grid types
- Integration tests: Cross-module interactions
- Property-based tests: Mathematical invariants and edge cases
- Benchmarks: Performance regression detection
- Documentation tests: All code examples in docs are tested
Development Setup
-
Clone the repository:
git clone git@gitlab.com:max.martinelli/grid1d.git cd grid1d -
Ensure you have the required dependencies:
- Rust nightly toolchain
-
Run the test suite:
cargo test --all-features -
Check formatting and linting:
cargo fmt --check cargo clippy --all-features
Contribution Guidelines
- Mathematical correctness: All changes must preserve mathematical guarantees
- Performance: Performance-critical paths must maintain or improve benchmarks
- Documentation: All public APIs must be thoroughly documented with examples
- Testing: New features require comprehensive test coverage
- Type safety: Leverage Rust's type system for compile-time correctness
๐ License
This project is licensed under the MIT License - see the LICENSE file for details.
๐ Related Projects
num-valid: Generic validated scalar arithmeticndarray: N-dimensional arrays for Rustnalgebra: Linear algebra libraryfaer: High-performance linear algebrapolars: Fast DataFrame library
๐ Documentation
For comprehensive API documentation, mathematical foundations, and advanced usage patterns:
- ๐ Complete Tutorial: Step-by-step guide from basics to advanced usage
- ๐ฏ Decision Guide: Choose the right grid types and scalar types for your needs
- ๐ API Documentation: Complete API reference with examples
- ๐ง Copilot Instructions: Quick reference for AI-assisted development
- ๐ Changelog: Version history and release notes
Quick Links
- Getting Started: See Your First Grid Tutorial
- Which Grid Type?: See Grid Type Decision Tree
- Which Scalar Type?: See Scalar Type Decision Tree
- Real-World Examples: See Applications Section
- Performance Tuning: See Performance Guide
๐ฏ Use Cases
grid1d is designed for:
Scientific Computing
- Computational Fluid Dynamics: Boundary layer meshes, shock capturing
- Finite Element Analysis: Adaptive mesh refinement, domain decomposition
- Spectral Methods: Fourier transforms, Chebyshev polynomials
- Numerical Integration: Quadrature rules, adaptive integration
Engineering Applications
- Heat Transfer: Non-uniform grids for boundary layers
- Structural Analysis: Stress concentration regions
- Signal Processing: Non-uniform sampling, filter design
- Control Systems: State-space discretization
Data Science
- Time Series: Irregular time grids, event-driven sampling
- Interpolation: Scattered data, adaptive sampling
- Numerical Methods: Root finding, optimization
- Machine Learning: Feature engineering, data preprocessing
License
Copyright 2023-2025, C.N.R. - Consiglio Nazionale delle Ricerche
Licensed under either of
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.
License Notice for Optional Feature Dependencies (LGPL-3.0 Compliance)
If you enable the rug feature, this project will depend on the rug library, which is licensed under the LGPL-3.0 license. Activating this feature may introduce LGPL-3.0 requirements to your project. Please review the terms of the LGPL-3.0 license to ensure compliance.
Dependencies
~5โ7MB
~128K SLoC