4 releases (2 breaking)
0.2.1 | Apr 2, 2024 |
---|---|
0.2.0 | Apr 2, 2024 |
0.1.0 | Apr 1, 2024 |
0.0.1 | Mar 31, 2024 |
#960 in Algorithms
89 downloads per month
32KB
623 lines
fqn-estimator
Rust implementation of the rolling «Fast $Q_n
$» algorithm for data streams.
The $k
$th order statistic retrieval from the pairwise differences is based on the paper[^1] of A. Mirzaian and E. Arjomandi, adapting the implementation[^2] from M. Cafaro and others[^3].
[^1]: DOI: Selection in X + Y
and matrices with sorted rows and columns (A. Mirzaian, E. Arjomandi)
[^2]: GitHub: cafaro/FQN (Massimo Cafaro)
[^3]: DOI: Fast Detection of Outliers in Data Streams with the Qn
Estimator (Massimo Cafaro, Catiuscia Melle, Marco Pulimeno, Italo Epicoco)
$Q_n
$ scaling coefficients are taken from the paper[^4] on finite-sample scale estimators.
[^4]: DOI: Finite-sample Rousseeuw-Croux scale estimators (Andrey Akinshin)
Example
use fqn_estimator::QnScaleEstimator;
fn main() {
let samples = [
257.0, 917.0, 236.0, 271.0, 339.0, 19.0, 994.0, 710.0, 411.0, 922.0,
516.0, 329.0, 405.0, 112.0, 980.0, 308.0, 918.0, 83.0, 116.0, 122.0,
329.0, 227.0, 541.0, 774.0, 455.0, 706.0, 151.0, 829.0, 463.0, 763.0,
453.0, 218.0, 872.0, 326.0, 162.0, 607.0, 689.0, 672.0, 56.0, 997.0,
598.0, 920.0, 817.0, 949.0, 155.0, 688.0, 755.0, 721.0, 430.0, 184.0,
314.0, 308.0, 709.0, 626.0, 333.0, 307.0, 63.0, 473.0, 594.0, 366.0,
687.0, 463.0, 46.0, 994.0, 948.0, 392.0, 431.0, 171.0, 413.0, 975.0,
126.0, 975.0, 337.0, 49.0, 196.0, 463.0, 784.0, 722.0, 522.0, 182.0,
919.0, 181.0, 120.0, 177.0, 131.0, 612.0, 5.0, 952.0, 663.0, 628.0,
648.0, 238.0, 845.0, 354.0, 223.0, 315.0, 985.0, 38.0, 2.0, 34.0,
];
let mut estimator = QnScaleEstimator::new(samples.len());
estimator.extend(samples);
let scale: f64 = estimator.estimate().unwrap().into();
assert!(310.31 < scale && scale < 310.32);
let median = estimator.median().unwrap().to_median();
assert!(430.49 < median && median < 431.51);
}
Features
num-traits
: usenum-traits
to enable median for even-sized samples
Dependencies
~150KB