#lexer-tokenizer #lexer #framework #match #extensible #allocation #accept #numbers #recognizer

elyze

Elyze is an extensible general purpose framework parser allowing to parser any type of data without allocation

18 stable releases

Uses new Rust 2024

1.5.4 Jun 29, 2025
1.5.2 Jun 1, 2025
1.5.1 May 31, 2025

#22 in Parser tooling

Download history 1448/week @ 2025-05-27 66/week @ 2025-06-03 56/week @ 2025-06-10 39/week @ 2025-06-17 229/week @ 2025-06-24 69/week @ 2025-07-01

401 downloads per month
Used in etcd-txn-parser

BSD-3-Clause

99KB
1.5K SLoC

Elyze

Is an extensible general purpose framework parser allowing to parser any type of data without allocation.

Scanner

The scanner is a simple wrapper a slice of data.

This data can be bytes, chars or any other type.

The scanner is the building block around which parsers are built.

It provides basic operations such as:

  • bumping the cursor
  • get the current position
  • remaining data to be scanned
  • rewinding the cursor

Parsers only use most of the operations internally.

Usage

use elyze::scanner::Scanner;
fn main() {
    let data = b"hello world";
    let mut scanner = Scanner::new(data);
}

Match

Parsing data involves recognizing a pattern in the data.

To help this recognition. The framework provides a trait: Match which defines how to recognize a pattern

pub trait Match<T> {
    /// Returns true if the data matches the pattern.
    ///
    /// # Arguments
    /// data - the data to match
    ///
    /// # Returns
    /// (true, index) if the data matches the pattern,
    /// (false, index) otherwise
    fn is_matching(&self, data: &[T]) -> (bool, usize);

    /// Returns the size of the matchable object.
    fn size(&self) -> usize;
}

Usage

For example, if you want to recognize the turbofish pattern "::<>".

You want that all characters to be matched.

To achieve, we need an object that implements `Match``.

Here the object will be the Turbofish struct.

use elyze::matcher::Match;

/// Pattern to match.
const TURBOFISH: [char; 4] = [':', ':', '<', '>'];

/// Handle turbofish operator.
struct Turbofish;

/// Match turbofish operator.
impl Match<char> for Turbofish {
    fn is_matching(&self, data: &[char]) -> (bool, usize) {
        let pattern = &TURBOFISH;
        if data.len() < pattern.len() {
            return (false, 0);
        }
        if &data[..pattern.len()] == pattern {
            return (true, pattern.len());
        }
        (false, 0)
    }

    fn size(&self) -> usize {
        TURBOFISH.len()
    }
}

fn main() {
    let data = [':', ':', '<', '>'];
    let mut scanner = elyze::scanner::Scanner::new(&data);
    let result = Turbofish.is_matching(&mut scanner);
    println!("{:?}", result);
}

Recognizable

Once you have an object that implements Match, you can use it to recognize a pattern.

For static data it's not that useful, but for something with not defined it can be interesting.

You want to recognize a number.

You need an object able to match a sequence of digits.

Because it's a common operation, the framework provides a builtin function to do it: match_number.

As soon an object implements Match, it also implements Recognizable and can be used to recognize a number.

use elyze::matcher::Match;
use elyze::scanner::Scanner;
use elyze::errors::ParseResult;
pub trait Recognizable<'a, T, V>: Match<T> {
    /// Try to recognize the object for the given scanner.
    ///
    /// # Type Parameters
    /// V - The type of the object to recognize
    ///
    /// # Arguments
    /// * `scanner` - The scanner to recognize the object for.
    ///
    /// # Returns
    /// * `Ok(Some(V))` if the object was recognized,
    /// * `Ok(None)` if the object was not recognized,
    /// * `Err(ParseError)` if an error occurred
    ///
    fn recognize(self, scanner: &mut Scanner<'a, T>) -> ParseResult<Option<V>>;
}

Usage

use elyze::bytes::matchers::match_number;
use elyze::matcher::Match;
use elyze::recognizer::Recognizable;

struct TokenNumber;

/// Implement the `Match` trait for the token number.
impl Match<u8> for TokenNumber {
    fn is_matching(&self, data: &[u8]) -> (bool, usize) {
        match_number(data)
    }

    fn size(&self) -> usize {
        // The size of the token number is 0 because it's not defined
        0
    }
}

fn main() {
    let data = b"123abc";
    let mut scanner = elyze::scanner::Scanner::new(data);
    let result = TokenNumber.recognize_slice(&mut scanner);
    println!("{:?}", result); // Ok(Some([49, 50, 51]))
    // If the result is successful
    if let Ok(Some(data)) = result {
        // Convert the data to a string
        let str_data = std::str::from_utf8(data).unwrap();
        // Convert the string to a number
        let result = str_data.parse::<usize>().unwrap();
        println!("{}", result); // 123
    }
}

Visitor

Recognizable is a trait that allows you to recognize a pattern. But most of the time you want to recognize a succession of patterns.

Like the Recognizable trait, Visitor takes the scanner as an argument and tries to determine whether the pattern is present or not.

use elyze::scanner::Scanner;
use elyze::errors::ParseResult;
/// A `Visitor` is a trait that allows to define how to visit a `Scanner`.
///
/// When a `Visitor` is used on a `Scanner`, it will consume the input from the
/// scanner and return the result of the visit.
///
/// # Type Parameters
///
/// * `T` - The type of the data to visit.
///
/// # Associated Functions
///
/// * `accept` - Try to accept the `Scanner` and return the result of the visit.
pub trait Visitor<'a, T>: Sized {
    /// Try to accept the `Scanner` and return the result of the visit.
    ///
    /// # Arguments
    ///
    /// * `scanner` - The scanner to accept.
    ///
    /// # Returns
    ///
    /// The result of the visit.
    fn accept(scanner: &mut Scanner<'a, T>) -> ParseResult<Self>;
}

But, unlike Recognizable, you can call a Visitor inside another Visitor to detect more complex patterns.

For example, "::<45>", the data wanted are the number "45", but embedded in the turbofish operator.

Because recognizing numbers is a common operation, the framework provides a builtin Number object which implements Visitor to recognize a number.

So to recognize a turbofish value, you have to recognize the start of the turbofish operator "::<", then the number, and then the end of the turbofish operator ">".

The recognition of the number is done by calling the accept method of the Number object.

use elyze::bytes::primitives::number::Number;
use elyze::bytes::token::Token;
use elyze::errors::ParseResult;
use elyze::recognizer::recognize;
use elyze::visitor::Visitor;

#[derive(Debug)]
struct Turbofish(usize);

// Implement the `Visitor` trait for the turbofish operator.
impl<'a> Visitor<'a, u8> for Turbofish {
    fn accept(scanner: &mut elyze::scanner::Scanner<u8>) -> ParseResult<Self> {
        // recognize the turbofish operator start "::<".
        recognize(Token::Colon, scanner)?;
        recognize(Token::Colon, scanner)?;
        recognize(Token::LessThan, scanner)?;
        // recognize the number
        let number = Number::accept(scanner)?.0;
        // recognize the turbofish operator end ">"
        recognize(Token::GreaterThan, scanner)?;
        Ok(Turbofish(number))
    }
}


fn main() {
    let data = b"::<45>garbage";
    let mut scanner = elyze::scanner::Scanner::new(data);
    let result = Turbofish::accept(&mut scanner);
    println!("{:?}", result); // Ok(Turbofish(45))
}

If you want you can embed the turbofish operator start pattern inside its own Visitor.

use elyze::visitor::Visitor;
use elyze::scanner::Scanner;
use elyze::errors::ParseResult;
use elyze::recognizer::recognize;
use elyze::bytes::token::Token;
use elyze::bytes::primitives::number::Number;

#[derive(Debug)]
struct Turbofish(usize);

struct TurbofishStartTokens;

// Implement the `Visitor` trait for the turbofish operator start tokens.
impl<'a> Visitor<'a, u8> for TurbofishStartTokens {
    fn accept(scanner: &mut Scanner<'a, u8>) -> ParseResult<Self> {
        // recognize the turbofish operator start "::<".
        recognize(Token::Colon, scanner)?;
        recognize(Token::Colon, scanner)?;
        recognize(Token::LessThan, scanner)?;
        Ok(TurbofishStartTokens)
    }
}

// Implement the `Visitor` trait for the turbofish operator.
impl<'a> Visitor<'a, u8> for Turbofish {
    fn accept(scanner: &mut elyze::scanner::Scanner<u8>) -> ParseResult<Self> {
        // recognize the turbofish operator start "::<".
        TurbofishStartTokens::accept(scanner)?;
        // recognize the number
        let number = Number::accept(scanner)?.0;
        // recognize the turbofish operator end ">"
        recognize(Token::GreaterThan, scanner)?;
        Ok(Turbofish(number))
    }
}


fn main() {
    let data = b"::<45>garbage";
    let mut scanner = elyze::scanner::Scanner::new(data);
    let result = Turbofish::accept(&mut scanner);
    println!("{:?}", result); // Ok(Turbofish(45))
}

There is no limit of embedding depth.

Match alternatives

Sometimes your parsing path will branch between two or more paths.

You may need to recognize an operator, for example.

The Recognizer allows to check multiple patterns.

use elyze::bytes::matchers::match_pattern;
use elyze::errors::{ParseError, ParseResult};
use elyze::matcher::Match;
use elyze::recognizer::Recognizer;
use elyze::scanner::Scanner;

#[derive(Debug)]
enum OperatorTokens {
    /// The `==` operator.
    Equal,
    /// The `!=` operator.
    NotEqual,
}

impl Match<u8> for OperatorTokens {
    fn is_matching(&self, data: &[u8]) -> (bool, usize) {
        match self {
            OperatorTokens::Equal => match_pattern(b"==", data),
            OperatorTokens::NotEqual => match_pattern(b"!=", data),
        }
    }

    fn size(&self) -> usize {
        match self {
            OperatorTokens::Equal => 2,
            OperatorTokens::NotEqual => 2,
        }
    }
}

fn main() -> ParseResult<()> {
    let data = b"== 2";
    let mut scanner = Scanner::new(data);
    let recognized = Recognizer::new(&mut scanner)
        .try_or(OperatorTokens::NotEqual)?
        .try_or(OperatorTokens::Equal)?
        .finish()
        .ok_or(ParseError::UnexpectedToken)?;

    println!("{:?}", recognized); // ==

    let data = b"!= 2";
    let mut scanner = Scanner::new(data);
    let recognized = Recognizer::new(&mut scanner)
        .try_or(OperatorTokens::NotEqual)?
        .try_or(OperatorTokens::Equal)?
        .finish()
        .ok_or(ParseError::UnexpectedToken)?;

    println!("{:?}", recognized); // !=

    let data = b"> 2";
    let mut scanner = Scanner::new(data);
    let recognized = Recognizer::new(&mut scanner)
        .try_or(OperatorTokens::NotEqual)?
        .try_or(OperatorTokens::Equal)?
        .finish()
        .ok_or(ParseError::UnexpectedToken);

    println!("{:?}", recognized); // error (UnexpectedToken)

    Ok(())
}

Accept alternatives

When the recognizer is not enough, you need to check several visitors.

That's the purpose of the Acceptor object.

For example, colors can be defined in different ways.

  • #ff0000
  • (255, 0, 0)
  • rgb(255, 0, 0)

If your parser wants to accept every pattern, you must test them successively then stop at the first matching pattern.

To achieve this, the framework provides an object called Acceptor which takes several Visitor.

Because of rust, all your results must be of the same type. So is a union as the form of an enumeration of visitable types.

Here:

enum ColorInternal {
    Rgb(RgbColor),
    Hex(HexColor),
    Tuple(TupleColor),
}

Then define the visitable types:

#[derive(Debug)]
struct RgbColor(u8, u8, u8);
#[derive(Debug)]
struct HexColor(u8, u8, u8);
struct TupleColor(u8, u8, u8);

To implement their Visitor:

impl<'a> Visitor<'a, u8> for TupleColor {
    fn accept(scanner: &mut Scanner<u8>) -> ParseResult<Self> {
        // recognize the rgb color start "("
        recognize(Token::OpenParen, scanner)?;
        // recognize the red number
        let red = Number::accept(scanner)?.0;
        // recognize the comma
        recognize(Token::Comma, scanner)?;
        recognize(Token::Whitespace, scanner)?;
        // recognize the green number
        let green = Number::accept(scanner)?.0;
        // recognize the comma
        recognize(Token::Comma, scanner)?;
        recognize(Token::Whitespace, scanner)?;
        // recognize the blue number
        let blue = Number::accept(scanner)?.0;
        // recognize the rgb color end ")"
        recognize(Token::CloseParen, scanner)?;
        Ok(TupleColor(red, green, blue))
    }
}

impl<'a> Visitor<'a, u8> for RgbColor {
    fn accept(scanner: &mut Scanner<u8>) -> ParseResult<Self> {
        // built-in visitor allows to recognize any string until punctuation
        let prefix = DataString::<&str>::accept(scanner)?.0;

        if prefix != "rgb" {
            return Err(UnexpectedToken);
        }

        // recognize the rgb color start "("
        recognize(Token::OpenParen, scanner)?;
        // recognize the red number
        let red = Number::accept(scanner)?.0;
        // recognize the comma
        recognize(Token::Comma, scanner)?;
        recognize(Token::Whitespace, scanner)?;
        // recognize the green number
        let green = Number::accept(scanner)?.0;
        // recognize the comma
        recognize(Token::Comma, scanner)?;
        recognize(Token::Whitespace, scanner)?;
        // recognize the blue number
        let blue = Number::accept(scanner)?.0;
        // recognize the rgb color end ")"
        recognize(Token::CloseParen, scanner)?;
        Ok(RgbColor(red, green, blue))
    }
}

impl<'a> Visitor<'a, u8> for HexColor {
    fn accept(scanner: &mut Scanner<u8>) -> ParseResult<Self> {
        recognize(Token::Sharp, scanner)?;
        let content = DataString::<&str>::accept(scanner)?.0;
        let (red, green, blue) = (
            u8::from_str_radix(&content[0..2], 16)?,
            u8::from_str_radix(&content[2..4], 16)?,
            u8::from_str_radix(&content[4..6], 16)?,
        );
        Ok(HexColor(red, green, blue))
    }
}

Then define the output Color type:

#[derive(Debug)]
pub struct Color(u8, u8, u8);

impl From<ColorInternal> for Color {
    fn from(value: ColorInternal) -> Self {
        match value {
            ColorInternal::Rgb(rgb) => Color(rgb.0, rgb.1, rgb.2),
            ColorInternal::Hex(hex) => Color(hex.0, hex.1, hex.2),
            ColorInternal::Tuple(tuple) => Color(tuple.0, tuple.1, tuple.2),
        }
    }
}

And finally define the Color visitor:

impl<'a> Visitor<'a, u8> for Color {
    fn accept(scanner: &mut Scanner<u8>) -> ParseResult<Self> {
        let color = Acceptor::new(scanner)
            .try_or(ColorInternal::Hex)?
            .try_or(ColorInternal::Rgb)?
            .try_or(ColorInternal::Tuple)?
            .finish()
            .ok_or(UnexpectedToken)?;
        Ok(color.into())
    }
}

fn main() {
    let data = b"rgb(255, 0, 0)";
    let mut scanner = Scanner::new(data);
    let result = Color::accept(&mut scanner);
    println!("{:?}", result); // Ok(Color(255, 0, 0))

    let data = b"#ff0000";
    let mut scanner = Scanner::new(data);
    let result = Color::accept(&mut scanner);
    println!("{:?}", result); // Ok(Color(255, 0, 0))

    let data = b"(255, 0, 0)";
    let mut scanner = Scanner::new(data);
    let result = Color::accept(&mut scanner);
    println!("{:?}", result); // Ok(Color(255, 0, 0))
}

Delimited groups

Sometimes parsing involves nested datastructures where parse are embedded in other parse.

If you have this expression: "1 + (2 * 3)", you first need to discover all binary groups, here

  • "Num(1) + Group(2 * 3)"'
  • "Num(2) * Num(3)"

To be able to resolve the whole expression, you first need to understand the concept of group between parenthesis, get the inner expression, then parse it.

That's the purpose of the peek function.

It takes a Peekable object and try to get the substring that matches the given Peekable.

The framework provides two Peekable implementations:

  • GroupKind::Parenthesis : A group enclosed in parentheses
  • GroupKind::Quotes : A group enclosed in single quotes, the backslash \' is escaped
  • GroupKind::DoubleQuotes : A group enclosed in double quotes, the backslash \" is escaped
  • Until : A group until the given Recognizable
  • UntilEnd : A group until the end of the input
use elyze::bytes::components::groups::GroupKind;
use elyze::peek::peek;

fn main() {
    let data = b"(2 * 3)";
    let mut scanner = elyze::scanner::Scanner::new(data);
    let result = peek(GroupKind::Parenthesis, &mut scanner).expect("failed to parse").expect("failed to peek");
    println!(
        "{}",
        String::from_utf8_lossy(result.peeked_slice()) // 2 * 3
    );
}

An example of the peeking usage is available in the expression example.

Separated List

The SeparatedList component is used to parse a list of elements separated by a separator.

If you have this expression: "1 + 2 + 3 + 4", you want to get all the numbers.

The data are separated by the + pattern.

The SeparatedList takes two Visitor as type parameters:

  • The element visitor : the one that will be used to parse each element of the list
  • The separator visitor : the one that will be used to parse the separator between each element of the list

Once one of parsers fails, the SeparatedList will stop parsing the list and return the result.

use elyze::bytes::primitives::number::Number;
use elyze::bytes::token::Token;
use elyze::errors::ParseResult;
use elyze::recognizer::recognize;
use elyze::scanner::Scanner;
use elyze::separated_list::SeparatedList;
use elyze::visitor::Visitor;

#[derive(Debug)]
struct Separator;

impl<'a> Visitor<'a, u8> for Separator {
    fn accept(scanner: &mut elyze::scanner::Scanner<u8>) -> ParseResult<Self> {
        recognize(Token::Tilde, scanner)?;
        recognize(Token::Tilde, scanner)?;
        recognize(Token::Tilde, scanner)?;
        Ok(Separator)
    }
}

fn main() {
    let data = b"1~~~2~~~3~~~4";
    let mut scanner = Scanner::new(data);
    let result =
        SeparatedList::<u8, Number<usize>, Separator>::accept(&mut scanner).map(|x| x.data);
    println!("{:?}", result); // Ok([Number(1), Number(2), Number(3), Number(4)])
}

Dependencies

~1.3–1.9MB
~33K SLoC