#conversion #approximation #convert #generics #from #into

conv

This crate provides a number of conversion traits with more specific semantics than those provided by 'as' or 'From'/'Into'

7 releases

Uses old Rust 2015

0.3.3 Mar 30, 2016
0.3.2 Mar 14, 2016
0.3.1 Nov 30, 2015
0.3.0 Oct 13, 2015
0.1.0 Aug 7, 2015

#645 in Rust patterns

Download history 56578/week @ 2024-07-28 42652/week @ 2024-08-04 67580/week @ 2024-08-11 61781/week @ 2024-08-18 33199/week @ 2024-08-25 39140/week @ 2024-09-01 40464/week @ 2024-09-08 46864/week @ 2024-09-15 44047/week @ 2024-09-22 47290/week @ 2024-09-29 44112/week @ 2024-10-06 37874/week @ 2024-10-13 47700/week @ 2024-10-20 51745/week @ 2024-10-27 56596/week @ 2024-11-03 50501/week @ 2024-11-10

209,125 downloads per month
Used in 321 crates (66 directly)

MIT license

77KB
1K SLoC

conv

This crate provides a number of conversion traits with more specific semantics than those provided by as or From/Into.

The goal with the traits provided here is to be more specific about what generic code can rely on, as well as provide reasonably self-describing alternatives to the standard From/Into traits. For example, the although T: From<U> might be satisfied in generic code, this says nothing about what kind of conversion that represents.

In addition, From/Into provide no facility for a conversion failing, meaning that implementations may need to choose between conversions that may not be valid, or panicking; neither option is appealing in general.

Links

Compatibility

conv is compatible with Rust 1.2 and higher.

Examples

# extern crate conv;
# use conv::*;
# fn main() {
// This *cannot* fail, so we can use `unwrap_ok` to discard the `Result`.
assert_eq!(u8::value_from(0u8).unwrap_ok(), 0u8);

// This *can* fail.  Specifically, it can overflow toward negative infinity.
assert_eq!(u8::value_from(0i8),     Ok(0u8));
assert_eq!(u8::value_from(-1i8),    Err(NegOverflow(-1)));

// This can overflow in *either* direction; hence the change to `RangeError`.
assert_eq!(u8::value_from(-1i16),   Err(RangeError::NegOverflow(-1)));
assert_eq!(u8::value_from(0i16),    Ok(0u8));
assert_eq!(u8::value_from(256i16),  Err(RangeError::PosOverflow(256)));

// We can use the extension traits to simplify this a little.
assert_eq!(u8::value_from(-1i16).unwrap_or_saturate(),  0u8);
assert_eq!(u8::value_from(0i16).unwrap_or_saturate(),   0u8);
assert_eq!(u8::value_from(256i16).unwrap_or_saturate(), 255u8);

// Obviously, all integers can be "approximated" using the default scheme (it
// doesn't *do* anything), but they can *also* be approximated with the
// `Wrapping` scheme.
assert_eq!(
    <u8 as ApproxFrom<_, DefaultApprox>>::approx_from(400u16),
    Err(PosOverflow(400)));
assert_eq!(
    <u8 as ApproxFrom<_, Wrapping>>::approx_from(400u16),
    Ok(144u8));

// This is rather inconvenient; as such, there are a number of convenience
// extension methods available via `ConvUtil` and `ConvAsUtil`.
assert_eq!(400u16.approx(),                       Err::<u8, _>(PosOverflow(400)));
assert_eq!(400u16.approx_by::<Wrapping>(),        Ok::<u8, _>(144u8));
assert_eq!(400u16.approx_as::<u8>(),              Err(PosOverflow(400)));
assert_eq!(400u16.approx_as_by::<u8, Wrapping>(), Ok(144));

// Integer -> float conversions *can* fail due to limited precision.
// Once the continuous range of exactly representable integers is exceeded, the
// provided implementations fail with overflow errors.
assert_eq!(f32::value_from(16_777_216i32), Ok(16_777_216.0f32));
assert_eq!(f32::value_from(16_777_217i32), Err(RangeError::PosOverflow(16_777_217)));

// Float -> integer conversions have to be done using approximations.  Although
// exact conversions are *possible*, "advertising" this with an implementation
// is misleading.
//
// Note that `DefaultApprox` for float -> integer uses whatever rounding
// mode is currently active (*i.e.* whatever `as` would do).
assert_eq!(41.0f32.approx(), Ok(41u8));
assert_eq!(41.3f32.approx(), Ok(41u8));
assert_eq!(41.5f32.approx(), Ok(41u8));
assert_eq!(41.8f32.approx(), Ok(41u8));
assert_eq!(42.0f32.approx(), Ok(42u8));

assert_eq!(255.0f32.approx(), Ok(255u8));
assert_eq!(256.0f32.approx(), Err::<u8, _>(FloatError::PosOverflow(256.0)));

// Sometimes, it can be useful to saturate the conversion from float to
// integer directly, then account for NaN as input separately.  The `Saturate`
// extension trait exists for this reason.
assert_eq!((-23.0f32).approx_as::<u8>().saturate(), Ok(0));
assert_eq!(302.0f32.approx_as::<u8>().saturate(), Ok(255u8));
assert!(std::f32::NAN.approx_as::<u8>().saturate().is_err());

// If you really don't care about the specific kind of error, you can just rely
// on automatic conversion to `GeneralErrorKind`.
fn too_many_errors() -> Result<(), GeneralErrorKind> {
    assert_eq!({let r: u8 = try!(0u8.value_into()); r},  0u8);
    assert_eq!({let r: u8 = try!(0i8.value_into()); r},  0u8);
    assert_eq!({let r: u8 = try!(0i16.value_into()); r}, 0u8);
    assert_eq!({let r: u8 = try!(0.0f32.approx()); r},   0u8);
    Ok(())
}
# let _ = too_many_errors();
# }

Change Log

v0.3.2

  • Added integer ↔ char conversions.
  • Added missing isize/usizef32/f64 conversions.
  • Fixed the error type of i64usize for 64-bit targets.

v0.3.1

  • Change to unwrap_ok for better codegen (thanks bluss).
  • Fix for Rust breaking change (code in question was dodgy anyway; thanks m4rw3r).

v0.3.0

  • Added an Error constraint to all Err associated types. This will break any user-defined conversions where the Err type does not implement Error.
  • Renamed the Overflow and Underflow errors to PosOverflow and NegOverflow respectively. In the context of floating point conversions, "underflow" usually means the value was too close to zero to correctly represent.

v0.2.1

  • Added ConvUtil::into_as<Dst> as a shortcut for Into::<Dst>::into.
  • Added #[inline] attributes.
  • Added Saturate::saturate, which can saturate Results arising from over/underflow.

v0.2.0

  • Changed all error types to include the original input as payload. This breaks pretty much everything. Sorry about that. On the bright side, there's now no downside to using the conversion traits for non-Copy types.
  • Added the normal rounding modes for float → int approximations: RoundToNearest, RoundToNegInf, RoundToPosInf, and RoundToZero.
  • ApproxWith is now subsumed by a pair of extension traits (ConvUtil and ConvAsUtil), that also have shortcuts for TryInto and ValueInto so that you can specify the destination type on the method.

Dependencies