5 releases

0.2.2 Jan 12, 2020
0.2.1 Dec 24, 2019
0.2.0 Dec 24, 2019
0.1.1 Dec 16, 2019
0.1.0 Dec 15, 2019

#1800 in Asynchronous

Apache-2.0

29KB
797 lines

Coerce-rs coerce-rs

Coerce-rs is an asynchronous (async/await) Actor runtime for Rust. It allows for extremely simple yet powerful actor-based multithreaded application development.

async/await Actors

An actor is just another word for a unit of computation. It can have mutable state, it can receive messages and perform actions. One caveat though.. It can only do one thing at a time. This can be useful because it can alleviate the need for thread synchronisation, usually achieved by locking (using Mutex, RwLock etc).

How is this achieved in Coerce?

Coerce uses Tokio's MPSC channels (tokio::sync::mpsc::channel), every actor created spawns a task listening to messages from a Receiver, handling and awaiting the result of the message. Every reference (ActorRef<A: Actor>) holds a Sender<M> where A: Handler<M>, which can be cloned.

Actors can be stopped and actor references can be retrieved by ID (currently Uuid) from anywhere in your application. Anonymous actors are automatically dropped (and Stopped) when all references are dropped. Tracked actors (using global fn new_actor) must be stopped.

Example

pub struct EchoActor {}

#[async_trait]
impl Actor for EchoActor {}

pub struct EchoMessage(String);

impl Message for EchoMessage {
    type Result = String;
}

#[async_trait]
impl Handler<EchoMessage> for EchoActor {
    async fn handle(
        &mut self,
        message: EchoMessage,
        _ctx: &mut ActorHandlerContext,
    ) -> String {
        message.0.clone()
    }
}

pub async fn run() {
    let mut actor = new_actor(EchoActor {}).await.unwrap();

    let hello_world = "hello, world".to_string();
    let result = actor.send(EchoMessage(hello_world.clone())).await;
    
    assert_eq!(result, Ok(hello_world));
}

Timer Example

pub struct EchoActor {}

#[async_trait]
impl Actor for EchoActor {}

pub struct EchoMessage(String);

impl Message for EchoMessage {
    type Result = String;
}

pub struct PrintTimer(String);

impl TimerTick for PrintTimer {}

#[async_trait]
impl Handler<PrintTimer> for EchoActor {
    async fn handle(&mut self, msg: PrintTimer, _ctx: &mut ActorHandlerContext) {
        println!("{}", msg.0);
    }
}

pub async fn run() {
    let mut actor = new_actor(EchoActor {}).await.unwrap();
    let hello_world = "hello world!".to_string();

    // print "hello world!" every 5 seconds
    let timer = Timer::start(actor.clone(), Duration::from_secs(5), TimerTick(hello_world));
    
    // timer is stopped when handle is out of scope or can be stopped manually by calling `.stop()`
    delay_for(Duration::from_secs(20)).await;
    timer.stop();
}

Dependencies

~5.5MB
~94K SLoC