#stack #concatenative #lambda #dynamic #language

bund_stdlib_text_classifier

Text classification using Bayes classifier for BUND programming language

5 releases (breaking)

0.5.0 Sep 11, 2025
0.4.0 Sep 10, 2025
0.3.0 Sep 10, 2025
0.2.0 Sep 10, 2025
0.1.0 Sep 10, 2025

#829 in Programming languages

39 downloads per month

Custom license and GPL-3.0 licenses

40KB
314 lines

Module for BUND standard library: Naive Bayes text classifier

A powerful and flexible text classification module built on top of the bund machine learning framework. This module is part of the Bund Standard Library (stdlib) and provides a streamlined workflow for training, evaluating, and deploying text classification models. This module is a library and not designed to be a standalone application, but it can be embedded inside BUND virtual machine.

Installation

This module required make and Rust framework to be installed first. After that:

cargo add bund_stdlib_text_classifier

Quick start

Get started with a simple example to classify text data. First, you have to create and train classifier

:TEST textclassifier.new
    :rust "./scripts/rust.txt" textclassifier.train.from_file
    "{A} tokens for RUST" format println
    :kant "./scripts/kant.txt" textclassifier.train.from_file
    "{A} tokens for KANT" format println
    :astronomy "./scripts/astronomy.txt" textclassifier.train.from_file
    "{A} tokens for ASTRONOMY" format println
    :tolstoy "./scripts/tolstoy.txt" textclassifier.train.from_file
    "{A} tokens for LEO TOLSTOY" format println
    textclassifier.train.finish

Then you can classify any text lines.

:TEST
  "At its simplest, a test in Rust is a function that’s annotated with the test attribute. Attributes are metadata about pieces of Rust code"
    textclassifier.classify

The following call will return a DICT value:

{
  "astronomy": 0.8331765363980779,
  "kant": 0.9968812285706273,
  "rust": 1.0,
  "tolstoy": 0.9968812285706273
}

BUND functions exposed in this module

Name Stack IN Stack OUT Description
textclassifier.new Classifier name
Classifier name
Create new classifier
textclassifier.exists Classifier name
Classifier name
TRUE/FALSE
Check if classifier exists
textclassifier.train.from_file Classifier name
Category
Filename
Classifier name
Number of tokens
Train classifier from text file
textclassifier.train.finish Classifier name
Classifier name
Finalize classifier training
textclassifier.classify Classifier name
Text for classification
Classifier name
DICT with scores
Classify text string using pre-trained classifier

Dependencies

~35MB
~494K SLoC