11 unstable releases
Uses old Rust 2015
0.5.1 | Jan 23, 2022 |
---|---|
0.5.0 | Jun 2, 2021 |
0.4.0 | Oct 25, 2020 |
0.3.2 | Mar 17, 2019 |
0.1.0 | Nov 30, 2015 |
#27 in Rust patterns
1,478,699 downloads per month
Used in 5,354 crates
(853 directly)
38KB
689 lines
approx
Approximate floating point equality comparisons and assertions for the Rust Programming Language.
lib.rs
:
A crate that provides facilities for testing the approximate equality of floating-point based types, using either relative difference, or units in the last place (ULPs) comparisons.
You can also use the *_{eq, ne}!
and assert_*_{eq, ne}!
macros to test for equality using a
more positional style:
#[macro_use]
extern crate approx;
use std::f64;
abs_diff_eq!(1.0, 1.0);
abs_diff_eq!(1.0, 1.0, epsilon = f64::EPSILON);
relative_eq!(1.0, 1.0);
relative_eq!(1.0, 1.0, epsilon = f64::EPSILON);
relative_eq!(1.0, 1.0, max_relative = 1.0);
relative_eq!(1.0, 1.0, epsilon = f64::EPSILON, max_relative = 1.0);
relative_eq!(1.0, 1.0, max_relative = 1.0, epsilon = f64::EPSILON);
ulps_eq!(1.0, 1.0);
ulps_eq!(1.0, 1.0, epsilon = f64::EPSILON);
ulps_eq!(1.0, 1.0, max_ulps = 4);
ulps_eq!(1.0, 1.0, epsilon = f64::EPSILON, max_ulps = 4);
ulps_eq!(1.0, 1.0, max_ulps = 4, epsilon = f64::EPSILON);
Implementing approximate equality for custom types
The *Eq
traits allow approximate equalities to be implemented on types, based on the
fundamental floating point implementations.
For example, we might want to be able to do approximate assertions on a complex number type:
#[macro_use]
extern crate approx;
#[derive(Debug, PartialEq)]
struct Complex<T> {
x: T,
i: T,
}
let x = Complex { x: 1.2, i: 2.3 };
assert_relative_eq!(x, x);
assert_ulps_eq!(x, x, max_ulps = 4);
To do this we can implement AbsDiffEq
, RelativeEq
and UlpsEq
generically in terms
of a type parameter that also implements AbsDiffEq
, RelativeEq
and UlpsEq
respectively.
This means that we can make comparisons for either Complex<f32>
or Complex<f64>
:
#
impl<T: AbsDiffEq> AbsDiffEq for Complex<T> where
T::Epsilon: Copy,
{
type Epsilon = T::Epsilon;
fn default_epsilon() -> T::Epsilon {
T::default_epsilon()
}
fn abs_diff_eq(&self, other: &Self, epsilon: T::Epsilon) -> bool {
T::abs_diff_eq(&self.x, &other.x, epsilon) &&
T::abs_diff_eq(&self.i, &other.i, epsilon)
}
}
impl<T: RelativeEq> RelativeEq for Complex<T> where
T::Epsilon: Copy,
{
fn default_max_relative() -> T::Epsilon {
T::default_max_relative()
}
fn relative_eq(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
T::relative_eq(&self.x, &other.x, epsilon, max_relative) &&
T::relative_eq(&self.i, &other.i, epsilon, max_relative)
}
}
impl<T: UlpsEq> UlpsEq for Complex<T> where
T::Epsilon: Copy,
{
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
fn ulps_eq(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool {
T::ulps_eq(&self.x, &other.x, epsilon, max_ulps) &&
T::ulps_eq(&self.i, &other.i, epsilon, max_ulps)
}
}
References
Floating point is hard! Thanks goes to these links for helping to make things a little easier to understand:
Dependencies
~180KB